Artificial Intelligence and Data Driven Optimization of Internal Combustion Engines

Artificial Intelligence and Data Driven Optimization of Internal Combustion Engines

von: Jihad Badra, Pinaki Pal, Yuanjiang Pei, Sibendu Som

Elsevier Reference Monographs, 2022

ISBN: 9780323884587 , 262 Seiten

Format: ePUB, PDF, Online Lesen

Kopierschutz: DRM

Mac OSX,Windows PC für alle DRM-fähigen eReader Apple iPad, Android Tablet PC's Apple iPod touch, iPhone und Android Smartphones Online-Lesen für: Mac OSX,Linux,Windows PC

Preis: 175,00 EUR

eBook anfordern eBook anfordern

Mehr zum Inhalt

Artificial Intelligence and Data Driven Optimization of Internal Combustion Engines


 

Front Cover

1

ARTIFICIAL INTELLIGENCE AND DATA DRIVEN OPTIMIZATION OF INTERNAL COMBUSTION ENGINES

2

ARTIFICIAL INTELLIGENCE AND DATA DRIVEN OPTIMIZATION OF INTERNAL COMBUSTION ENGINES

4

Copyright

5

Contents

6

Contributors

10

Foreword

12

Preface

16

1 - Introduction

18

1. Industrial revolution

18

2. Artificial intelligence, machine learning, and deep learning

19

3. Machine learning algorithms

20

4. Artificial intelligence-based fuel-engine co-optimization

21

4.1 Optimization of internal combustion engine

21

4.1.1 Design of experiments

22

4.1.2 Genetic algorithm

24

4.1.3 Machine learning-based algorithms

25

4.2 Optimization of fuel formulation

30

4.3 Mitigation of rare combustion events

32

5. Summary

33

References

33

1 - Artificial Intelligence to optimize fuel formulation

42

2 - Optimization of fuel formulation using adaptive learning and artificial intelligence

44

1. Introduction and motivation

44

2. Mixed-mode combustion and fuel performance metrics

45

3. A neural network model to predict fuel research octane numbers

48

4. Optimization problem formulation and description of solution approaches

49

4.1 Constrained optimization formulation

49

4.2 Genetic algorithm

50

4.3 Gaussian process–based surrogate model optimization algorithm

52

5. Numerical experiments and results

54

6. Discussion

57

7. Summary and concluding remarks

59

Acknowledgments

60

References

60

3 - Artificial intelligence–enabled fuel design

64

1. Transportation fuels

64

1.1 Fuel representation

64

1.2 Fuel formulation workflow

65

1.3 Artificial intelligence modeling approaches

66

2. Application of artificial intelligence to fuel formulation

69

2.1 High throughput screening: finding a needle in the haystack

69

2.2 Fuel property prediction by machine learning models

71

2.3 Reaction discovery

74

2.4 Fuel-engine co-optimization

75

3. Conclusions and perspectives

75

Acknowledgments

77

References

77

2 - Artificial Intelligence and computational fluid dynamics to optimize internal combustion engines

86

4 - Engine optimization using computational fluid dynamics and genetic algorithms

88

1. Introduction

88

2. Modeling framework and acceleration strategies

91

2.1 Computational fluid dynamics acceleration techniques

91

2.1.1 Adaptive mesh refinement

91

2.1.2 Detailed chemistry acceleration strategies

92

2.2 Engine geometry generation

93

2.2.1 Method of splines

93

2.2.2 Method of forces

94

2.3 Virtual injection model

95

3. Optimization methods

96

3.1 Fundamentals of genetic algorithms

96

3.2 Pioneering investigations

98

3.3 Multiobjective framework

101

3.4 Convergence acceleration

108

4. Summary and concluding remarks

114

References

115

5 - Computational fluid dynamics–guided engine combustion system design optimization using design of experiments

120

1. Introduction

120

2. Methodologies

123

2.1 Design space construction

124

2.2 Response surface model formulation

126

2.3 Model-based design optimization and verification

129

3. A recent application

130

3.1 Engine and fuel specifications

130

3.2 Computational fluid dynamic model setup and validation

130

3.3 Design variables

131

3.4 Objective variables and evaluation method

133

3.5 Data fitting and optimization

134

4. Recommendations for best practice

135

4.1 Adequate computational fluid dynamic model validation

135

4.2 Efficient geometry and mesh manipulation

136

4.3 Sample size

136

4.4 Optimization across full engine operation range

136

4.5 Computational efficiency

136

5. Conclusions and perspectives

137

Acknowledgments

138

References

138

6 - A machine learning-genetic algorithm approach for rapid optimization of internal combustion engines

142

1. Introduction

142

2. Engine optimization problem setup

144

3. Training and data examination

146

4. Machine learning-genetic algorithm approach

149

4.1 Optimization methodology

149

4.2 Repeatability of machine learning-genetic algorithm

151

4.2.1 Extension of variable domain

153

4.3 Postprocessing and robustness

156

5. Automated machine learning-genetic algorithm

158

5.1 Hyperparameter selection

159

5.1.1 Manual selection

159

5.1.2 Automated strategies for selecting hyperparameters

160

5.2 Problem setup

162

5.3 Results

163

6. Summary

173

Acknowledgments

173

References

173

7 - Machine learning–driven sequential optimization using dynamic exploration and exploitation

176

1. Introduction

176

2. Active ML optimization (ActivO)

177

2.1 Basic algorithm

177

2.2 Query strategies

178

2.3 Convergence criteria

180

2.4 Dynamic exploration and exploitation

181

3. Case study 1: two-dimensional cosine mixture function

182

4. Case study 2: computational fluid dynamics (CFD)-based engine optimization

188

5. Conclusions

196

Acknowledgments

197

References

197

3 - Artificial Intelligence to predict abnormal engine phenomena

200

8 - Artificial-intelligence-based prediction and control of combustion instabilities in spark-ignition engines

202

1. Introduction

202

1.1 Artificial intelligence applications to engine controls

202

1.2 Dilute combustion instability background

204

2. Case study: artificial-intelligence-enhanced modeling of dilute spark-ignition cycle-to-cycle variability

206

3. Case study: neural networks for combustion stability control

210

3.1 Artificial neural networks

210

3.2 Spiking neural networks

212

4. Case study: learning reference governor for model-free dilute limit identification and avoidance

216

4.1 Constrained combustion phasing control problem

216

4.2 Learning reference governor for avoiding misfire events

219

5. Summary

221

References

222

9 - Using deep learning to diagnose preignition in turbocharged spark-ignited engines

230

1. Introduction

230

1.1 Fault detection

230

1.2 Optimization and control

231

1.3 Predicting combustion parameters (phasing and cycle-to-cycle variation) and emissions

232

2. Preignition detection using machine learning algorithm

232

2.1 Feed forward multilayer neural networks

234

2.2 Convolutional neural networks

235

2.3 Recurrent neural networks

236

3. Activation functions

238

4. Experiments and data extraction

239

5. Machine learning methodology

241

6. Model 1: Input from principal component analysis

247

7. Model 2: Time series input

248

8. Model metrics

249

9. Results and discussion

250

9.1 Training and validation losses

250

10. Conclusions

251

References

252

Further reading

253

Index

256

A

256

B

257

C

257

D

257

E

258

F

258

G

258

H

258

I

258

K

259

L

259

M

259

N

259

O

260

P

260

Q

260

R

260

S

260

T

260

U

260

V

260

Z

260

Back Cover

262