Handbook of Memristor Networks

von: Leon Chua, Georgios Ch. Sirakoulis, Andrew Adamatzky

Springer-Verlag, 2019

ISBN: 9783319763750 , 1357 Seiten

Format: PDF, Online Lesen

Kopierschutz: Wasserzeichen

Mac OSX,Windows PC für alle DRM-fähigen eReader Apple iPad, Android Tablet PC's Online-Lesen für: Mac OSX,Linux,Windows PC

Preis: 341,33 EUR

eBook anfordern eBook anfordern

Mehr zum Inhalt

Handbook of Memristor Networks


 

Preface

5

Contents

11

1 The Fourth Element

15

1 Axiomatic Definition of Circuits Elements

15

2 (v(?)-i(?)) Circuit Elements

20

3 Complexity Metric of Circuit Elements

22

4 Fingerprint of Memristors

22

5 Concluding Remarks

26

References

26

2 If It’s Pinched It’s a Memristor

29

1 If It’s Pinched It’s a Memristor

30

1.1 First Man-Made Memristor

31

1.2 Pre-1948 Memristors

31

1.3 Pre-1970 Thin Oxide-Film Memristors

33

1.4 1971: Synthesized Memristors

35

1.5 Post-2000 Memristors

38

1.6 Organic Memristors

41

1.7 Biological Memristors

41

1.8 Plant Memristor

43

1.9 A Micro Kinetic Memristor

46

2 Three Memristor Representations

46

2.1 Extended Memristor

46

2.2 Generic Memristor

46

2.3 Ideal Memristor

48

3 Potassium and Sodium Ion Channels Are Generic Memristors

51

3.1 Pinched Hysteresis Loops Evolve with Frequency

54

3.2 Pinched Hysteresis Loops Degenerate to Straight Lines at High Frequencies

57

3.3 DC V-I Curves

59

4 Ideal Memristors Have Bizarre DC V-I Curves

61

4.1 Example 1: Memristor V-I “Rectifier” Curve

62

4.2 Example 2: Memristor Without a DC V-I Curve

62

4.3 The DC V-I Curve of an Ideal Memristor Is a Single Point (V, I) = (0, 0)!

64

5 Ideal Memristor: Four Guided Tours

66

5.1 Ideal Memristor Guided Tour 1

67

5.2 Ideal Memristor Guided Tour 2

68

5.3 Ideal Memristor Guided Tour 3

68

5.4 Ideal Memristor Guided Tour 4

68

5.5 All Ideal Memristors Are Non-volatile Analog Memories

72

5.6 Modelling Beck et al. “Bow-Tie” Loop

73

6 Generic Memristor: A Guided Walk

74

6.1 Non-volatile Binary Memory

76

6.2 How to Set and Reset Memory States?

78

6.3 Why Minimum Pulse Width and Minimum Pulse Amplitude?

78

6.4 A Bi-continuum Non-volatile Memory

79

6.5 Pinched Hysteresis Loop Need not Be Symmetric

80

7 Extended Memristors: A Glimpse

81

8 Locally-Active Memristors

87

8.1 A Locally-Active Memristor Oscillator

88

8.2 A One-Memristor Chaos Generator

90

8.3 A One-Memristor Oscillator

93

9 If It’s Not Pinched It’s Not a Memristor

94

10 Concluding Remarks

96

Appendix

99

References

100

3 Everything You Wish to Know About Memristors but Are Afraid to Ask

103

1 Some Nagging Questions About Memristors

103

2 Experimental Definition of Memristors

104

3 Ideal Memristors

109

4 Ideal Generic Memristor

112

4.1 Graphical Composition Method for Generating G(X) and  (x) from a Voltage-Controlled Ideal Memristor

113

4.2 Graphical Composition Method for Generating R(X) and  (x) from a Current-Controlled Ideal Memristor

115

4.3 Ideal Memristors and Its Siblings Give Identical Pinched Hysteresis Loops

117

4.4 Recovering Ideal Memristor from Its Siblings

118

5 Generic Memristor

119

6 Extended Memristor

129

7 Pinched Hysteresis Loop Fingerprints

131

8 Coincident Zero-Crossing Signatures

133

8.1 Passive Memristors Have Identical Zero Crossings

138

8.2 Passive Memristors Have Zero Phase Shifts

138

9 POP: Power—Off Plot

139

10 DC V-I Plots

144

10.1 Passive but Locally-Active Memristors

154

10.2 DC V-I Plots May Contain Unobservable Points

156

10.3 Two Stable Branches Through Origin Implies Non-volatile Binary Memory

157

10.4 Quasi DC V-I Plot

157

10.5 A Shoelace DC V-I Plot

157

11 Continuum-Memory Memristors

159

11.1 Pinched Hysteresis Loop at Extreme Low Frequencies

161

11.2 Quasi DC V-I Plot Is not DC V-I Plot!

162

12 Concluding Remarks

164

Appendix

167

References

170

4 Aftermath of Finding the Memristor

172

References

176

5 Three Fingerprints of Memristor

177

1 Introduction

177

2 Generic Definition of Memristor

178

3 Memristor Fingerprints

180

3.1 Memristor Fingerprint 1: Pinched Hysteresis Loop

180

3.2 Memristor Fingerprint 2: Hysteresis Lobe Area Decreases as Frequency Increases

183

3.3 Memristor Fingerprint 3: Pinched Hysteresis Loop Shrinks to a Single-Valued Function at Infinite Frequency

188

4 Memductance Limiting-Slope Calculation Methods

190

4.1 Memductance Limiting-Slope Calculation Method 1

190

4.2 Memductance Limiting-Slope Calculation Method 2

191

5 Transversality at the Origin

196

5.1 Example of Transversal Pinched Hysteresis Loop

197

5.2 Examples of Non-transversal Pinched Hysteresis Loop

198

6 Conclusion

205

References

208

6 Resistance Switching Memories are Memristors

209

1 Pinched Hysteresis Loops

210

2 Continuum of Non-volatile Memories

216

3 -q Curve and Memristance Versus State Maps are Equivalent Memristor Representations

217

4 Resistance Versus State Map and State Equation

219

5 Correspondence Between Small-Signal Memristance and Chord Memristance

219

6 Ideal Memristor -q Curves for Binary Memories

221

7 Unfolding the Memristor

227

7.1 Non-volatile Memristors

232

7.2 Negative Resistance

233

7.3 Is Memristor Negative Resistance Real or Artifact?

234

8 Switching and Sensing Resistance Memory

235

9 Concluding Remarks

239

References

242

7 The Detectors Used in the First Radios were Memristors

243

1 Introduction

243

2 Cat's Whisker Detector Setup

246

3 Terminology

248

4 Experimental Results

249

4.1 Cohering Action

250

4.2 Multistable Memristive Behavior

250

4.3 Bistable Resistive RAM/Memristive Mode

252

5 Discussion

255

References

257

8 Why are Memristor and Memistor Different Devices?

258

1 Introduction

258

2 Memristor and Memistor are Different

259

2.1 Memristor

259

2.2 Memistor

261

3 Memristor-Based Memistor

263

3.1 Two Back-to-Back Series-Connected Memristors

263

3.2 Charge Versus Flux Relationship of the Composite Device with Two Back-to-Back Series-Connected Memristors

266

4 Widrow's Memistor is Not Well-Posed

268

5 More Distinctions Between Memistor and Memristor

273

6 Conclusion

275

References

275

9 The Art and Science of Constructing a Memristor Model: Updated

277

1 Introduction

278

2 Locally Active Memristor: Physical Principles Approach

281

3 Nonvolatile Titanium Dioxide Memristor: Measurement Approach

285

4 Nonvolatile Tantalum Pentoxide Memristor: State Variable Identification

288

5 Conclusions

293

References

293

10 Memristor, Hodgkin-Huxley, and Edge of Chaos

296

1 Introduction

296

2 Definition, Symbol, and Fingerprints

297

2.1 Memristor is Defined by a State-Dependent Ohm's Law

297

2.2 If It's Pinched It's a Memristor

300

2.3 Ideal Memristor

301

3 When is a Memristor Non-volatile?

303

4 Synapses Are Memristors

305

4.1 Learning with Memristors: Habituation

305

4.2 Learning with Memristors: LTP

307

5 Hodgkin-Huxley Axon is Made of Memristors

309

5.1 Anomalies of the Hodgkin-Huxley Axon Circuit Model

309

5.2 Deriving the DC V-I Characteristic of the Hodgkin-Huxley Axon

314

5.3 Deriving the Small-Signal Admittance of the Hodgkin-Huxley Axon

315

6 Neurons Are Poised Near the Edge of Chaos

318

6.1 Eigenvalues of Hodgkin-Huxley Axon Are Zeros of Y(s)

318

6.2 Action Potential Originates Near the Edge of Chaos

319

7 How Did I Connect Memristor to Hodgkin-Huxley?

321

References

322

11 Brains Are Made of Memristors

323

1 Introduction

323

2 Characterization of Pinched Hysteresis Loops

324

2.1 Examples of Pinched Hysteresis Loops of Potassium Memristor

326

2.2 Examples of Pinched Hysteresis Loops of Sodium Ion-Channel Memristor

328

2.3 Computation of Lobe Area of Pinched Hysteresis Loop via Riemann–Stieltjes Integral

333

2.4 Clockwise and Counter-Clockwise Orientation of the Pinch Hysteresis Loop of a Memristor

336

3 DC V-I Curves of the Potassium Ion-Channel Memristor, Sodium Ion-Channel Memristor and Memristive Hodgkin-Huxley Axon Circuit Model

342

4 Small-Signal Equivalent Circuits and Nyquist Plot of Ion-Channel Memristor

343

4.1 Small-Signal Equivalent Circuit and Nyquist Plot of the Potassium Ion-Channel Memristor

345

4.2 Small-Signal Equivalent Circuit and Nyquist Plot of the Sodium Ion-Channel Memristor

348

4.3 Small-Signal Equivalent Circuit and Nyquist Plot of the Hodgkin-Huxley Axon Circuit Model

351

5 Conclusion

358

References

358

12 Synapse as a Memristor

359

1 Introduction

359

2 How Do Neurons Work?

360

2.1 Synapse: Bridge for Neurons

361

2.2 Gerstner's Pair-Based STDP Model

361

3 Memristor Acting as a Synapse

362

3.1 Linares' Pair-Based Memristive STDP Model

363

3.2 Froemke's Triplet-Based STDP Model

365

3.3 Conflict with the Triplet Rule

366

4 Memristor Acting as a More Real Synapse

368

4.1 Memristive STDP Model with Adaptive Thresholds

368

4.2 Quantitative Equivalency of the Models

370

5 Short-Term Plasticity Revisited

373

References

374

13 Memristors and Memristive Devices for Neuromorphic Computing

376

1 Introduction

376

2 Mathematical Definition

377

2.1 Memristor - Strict Definition

377

2.2 Memristive Systems

378

3 Material Systems

378

3.1 Cation Migration

379

3.2 Anion Migration

380

3.3 Modeling

380

4 Synaptic Plasticity

383

4.1 Memristors as Weight Storage

384

4.2 Synapse Emulation

384

5 Hardware Topology

389

5.1 Crossbar Architecture

389

5.2 Hybrid Memristor/CMOS Circuitry

391

5.3 Emergent Behavior

391

6 Conclusion

393

References

394

14 Self-organization and Emergence of Dynamical Structures in Neuromorphic Atomic Switch Networks

397

1 Introduction

398

2 Emergence of a Complex Neuromorphic Architecture

400

2.1 Inorganic Synapses

401

2.2 The Growth of a Concept

403

2.3 Dynamical Circuits

406

3 Modelling and Simulation of Atomic Switches: From Nodes to Networks

408

4 Characterization of the Atomic Switch Network

410

4.1 Device Activation

410

4.2 Memristive Properties

412

4.3 Network Plasticity

414

4.4 Emergent Properties — Harmonic Generation

415

4.5 Emergent Properties — Criticality

416

5 Harnessing System Dynamics

419

5.1 Resistance Control

419

5.2 Reservoir Computing

421

6 Conclusions and Outlook

426

References

427

15 Spike-Timing-Dependent-Plasticity with Memristors

434

1 Introduction

435

2 STDP

436

2.1 STDP Versus Anti-STDP

439

2.2 Additive Versus Multiplicative STDP

439

3 Memristance

440

3.1 Memristor Moving-Wall Macro Model for Two-Terminal Devices

442

3.2 Memristor Filament Model for Two-Terminal Devices

443

4 Relation Between STDP and Memristance

445

4.1 Influence of Action Potential Shape

447

4.2 Wall Model Memristors Implement a Multiplicative Type of STDP

448

4.3 Filament Model Memristors Implement Additive STDP

449

5 Connecting Memristors with Spiking Neurons for Asynchronous STDP Learning

450

5.1 STDP Variations

454

6 Address Event Representation (AER)

455

7 Building a Self-learning Visual Cortex with Memristors and STDP-Ready AER Hardware

456

7.1 Topology of V1 Visual Cortex Layer and Physical Realization

457

7.2 AER Temporal Difference Retina

458

7.3 STDP Training Results of V1 Layer

459

8 Practical Limitations, Realistic Sizes, Pitches, Density, Crosstalk and Power Considerations

463

9 Conclusions

466

References

466

16 Designing Neuromorphic Computing Systems with Memristor Devices

473

1 Introduction

474

2 Preliminary

475

3 Hybrid Spiking-Based Multi-Layered Self-Learning Neuromorphic System Based on Memristor Crossbar Arrays

476

3.1 Problem and Motivation

476

3.2 Preliminary

477

3.3 Design Methodology and Hardware Implementation

479

3.4 System Evaluation

483

4 Hardware Implementation of Echo State Networks using Memristor Double Crossbar Arrays

485

4.1 Problem and Motivation

485

4.2 Preliminary

487

4.3 Proposed Architecture and Design Procedure

488

4.4 System Evaluation

492

5 Conclusions

496

References

496

17 Brain-Inspired Memristive Neural Networks for Unsupervised Learning

499

1 Introduction

499

2 RRAM Devices

501

3 RRAM Synapses

504

4 RRAM Networks

507

4.1 Feed-Forward Networks

507

4.2 Recurrent Neural Networks

516

5 Conclusions

522

References

522

18 Neuromorphic Devices and Networks Based on Memristors with Ionic Dynamics

530

1 Introduction

531

2 Ion Motion and Filament Dynamics in Oxide Memristors

532

2.1 Direct Visualization of Oxygen Ion Motion

533

2.2 Switching Dynamics in HfO2 Memristors

535

3 Device Optimizations on 2-Terminal Memristors for Neuromorphic Computing

538

3.1 Optimization of Weight Tuning Linearity

539

3.2 Correlation Between Number of Weight States with Oxide Structure

542

4 Development of Multi-terminal Synaptic Devices

544

4.1 Physically Evolving Networks Based on Self-organization of Ag Nanoclusters

544

4.2 3-Terminal Devices Emulating Heterosynaptic Plasticity

547

5 Neuromorphic Networks Based on Memristors

549

5.1 Neural Networks Composed of Heterosynaptic Devices with Flexible Learning Scheme

549

5.2 Tolerance of Intrinsic Device Variation in Fuzzy Restricted Boltzmann Machine Networks

552

6 Conclusion and Outlook

554

References

554

19 Associative Enhancement and Its Application in Memristor Based Neuromorphic Devices

558

1 Introduction

558

2 Flux and Continuum Resistance Memristors

560

3 Heterogeneous Pulse Stimuli Association, Synergy and Emergent Properties

564

4 Applications of Associative Memory in Neuromorphic Hardware

569

5 Summary

570

References

571

20 Organic Memristive Devices and Neuromorphic Circuits

574

1 Introduction

574

2 Architecture and Properties of Organic Memristive Devices

576

3 Logic Elements with Memory

580

4 Oscillating Element

582

5 Circuits with Adaptive and Neuromorphic Properties

584

6 Stochastic Fibrillar and Self-assembled Networks

587

7 Conclusion

594

References

595

21 Bio-inspired Neural Networks

597

1 Introduction

597

2 Biological Mechanisms

598

2.1 Connectome (Wires and Neurons)

598

2.2 Synapses (Resistance and Biochemistry)

599

2.3 Charge Propagation and Re-amplification (Ion Flux)

600

2.4 Two Protypes of Neurons: Excitatory (Glutamatergic) and Inhibitory (GABAergic) Neurons

602

2.5 Long-Term Potentiation

602

2.6 Long-Term Depression

604

2.7 Spike-Time-Dependent Plasticity

605

3 Implementations Using Memristive Systems and Conventional Electronics

607

3.1 (Leaky) Integrate and Fire Model

607

3.2 Long-Term Depression and Potentiation

608

3.3 Spike-Time-Dependent Plasticity

609

3.4 Pavlov's Dog

610

3.5 Hodgkin-Huxley Model

612

3.6 Complex Problem Solving Using Memristors

613

4 Conclusion and Outlook

615

References

616

22 Memristor Bridge-Based Artificial Neural Weighting Circuit

620

1 Introduction

620

2 Memristors and Memristive Devices

622

3 Synaptic Multiplication via Memristor Bridge

624

3.1 Weighting of Input Signals via the Memristor Bridge

625

4 Memristor-Bridge Neuron

626

5 Weight Programming in Memristor Bridge Synapses

627

6 Simulation

628

6.1 Linearity in Synaptic Weight Programming

629

6.2 Synaptic Weight (Multiplication) Processing

631

6.3 Applications

632

7 Conclusion

635

References

635

23 Cellular Nonlinear Networks with Memristor Synapses

637

1 Introduction

637

2 Brief Review of Memristor Models

640

2.1 Generalized BCM and Its Circuit Implementation

642

3 Memristor Synaptic Weighting Circuits for Neuromorphic Applications

644

3.1 Synaptic Weighting Circuit

647

3.2 Simulations

649

4 Conclusions

657

References

658

24 Evolving Memristive Neural Networks

661

1 Introduction

661

1.1 Content Overview

662

2 Background

662

2.1 Spiking Networks

663

2.2 Resistive Memory Synapses

663

2.3 Synaptic Plasticity

666

3 The System

668

3.1 Neural Control Architecture

668

3.2 Benchmark Synapses

670

3.3 STDP Implementation

672

4 Genetic Algorithm

674

4.1 Self-adaptive Mutation

675

4.2 Topology Mechanisms

675

4.3 GA Control of Variable Synapses

676

5 Experimentation

677

5.1 Test Environment

678

5.2 Results

679

6 Conclusions

687

References

688

25 Spiking Neural Computing in Memristive Neuromorphic Platforms

691

1 Introduction

691

2 Spiking Neural Networks

694

2.1 Spike Information Coding

695

2.2 Network Topology

696

3 Spiking Neuron Model

699

3.1 Biological, Artificial and Spiking Neuron

699

3.2 Spiking Neuron

701

4 Synapse and Learning

705

4.1 Synapse Model

707

4.2 Learning and Plasticity

709

5 Hardware Spiking Neural Network Systems

719

6 Discussion

722

6.1 Homeostasis

722

6.2 Winner-Take-All

723

7 Conclusion

724

References

724

26 Associative Networks and Perceptron Based on Memristors: Fundamentals and Algorithmic Implementation

729

1 Introduction

729

2 Crossbar Memory Arrays

731

3 Associative Memories

732

3.1 Willshaw Network

733

3.2 Hopfield Network

738

4 Perceptron

738

4.1 Principle of Operation

739

4.2 Algorithm Implementation

741

5 Conclusions

745

References

763

27 Spiking in Memristor Networks

766

1 Introduction

766

2 Single Memristor Spiking Properties

767

2.1 Properties of Memristor Spikes

767

2.2 A Mathematical Description of Experimentally-Measured Spikes

769

2.3 Theoretical Model of Single Spikes

772

2.4 The Memory-Conservation Theory as Applied to Memristor Spikes

775

2.5 Conservation Function

776

3 Constructionist Approach to Memristor Networks

777

3.1 Methodology

779

3.2 Two Memristor Circuit Results

782

3.3 Three Memristor Circuit Results

783

4 Conclusion

786

References

787

28 Three-Dimensional Crossbar Arrays of Self-rectifying Si/SiO2/Si Memristors

789

1 Introduction

789

2 Overview of Silicon Oxide Based Memristors

790

3 Self-rectifying P-Si/SiO2/N–Si Memristors

792

3.1 Unipolar Resistive Switching in Silicon Oxide

792

3.2 Room-Temperature Fabrication of Crystalline Silicon Electrode

793

3.3 Self-rectifying Resistive Switching Behavior

795

4 Switching Mechanism Study

798

4.1 Electrical Measurements

798

4.2 Physical Characterization

800

5 Three-Dimensional All Silicon Memristors Crossbars

802

5.1 SPICE Simulation

802

5.2 Experimental Measurements

806

6 Conclusions

809

References

810

29 The Self-directed Channel Memristor: Operational Dependence on the Metal-Chalcogenide Layer

812

1 Introduction

812

2 Materials Modifications

814

3 Device Structure and Fabrication

815

4 Electrical Measurements

818

4.1 DC I-V Measurements of All Samples at Room Temperature

818

4.2 CW I-V Room Temperature Results

823

4.3 LT Spice Model Simulations

825

4.4 DC and Cycling Endurance Measurements at Temperature

828

4.5 Programmed Resistance as a Function of Temperature

831

4.6 Endurance Cycling

833

5 Conclusions

835

References

838

30 Resistive Switching Devices: Mechanism, Performance and Integration

840

1 Resistive Switching Mechanisms

840

1.1 Electrochemical Metallization (ECM)

841

1.2 Valence Change Mechanism (VCM)

848

1.3 Thermochemical Mechanism (TCM)

856

1.4 Electrostatic/Electronic Effects

859

1.5 Phase Change Memory Mechanism (PCM)

862

2 Performance Improvement

864

2.1 Material Modulation

866

2.2 Device Structure Design

871

2.3 Operating Schemes Optimization

873

3 Integration of Resistive Switching Memory

877

3.1 Active Array

878

3.2 Passive Array

880

3.3 3D Architectures

889

3.4 Reliability Issue for 3D RRAM Array

893

References

899

31 Behavior of Multiple Memristor Circuits

909

1 Introduction

909

2 Single Memristor Circuit

911

2.1 Linear Model

912

2.2 Nonlinear Model

913

3 Transient and Stable State of Composite Memristance

914

4 Composite Memristance of Serially Connected Memristors

916

4.1 Serial Memristor Circuit with the Same Polarities

916

4.2 Serial Memristor Circuit with the Opposite Polarities

918

5 Composite Memristance of Parallel Memristors

919

5.1 Parallel Memristor Circuit with Identical Polarities

919

5.2 Parallel Memristor Circuit with Opposite Polarities

921

6 Simulation Results

922

6.1 Linear Model

922

6.2 Nonlinear Model

927

6.3 Memristance Variance

930

7 Conclusion

931

References

936

32 A Memristor-Based Chaotic System with Boundary Conditions

937

1 Introduction

937

2 The HP Memristor Model with Boundary Conditions

938

3 A New Memristive Chaotic System

942

4 Chaotic Attractor and its Bifurcation Analysis

945

5 Analog Implementation and SPICE Simulations of the Chaotic Attractor

946

6 Conclusions

949

References

950

33 Switching Synchronization and Metastable States in 1D Memristive Networks

951

1 Introduction

951

2 Accelerated and Decelerated Switching of Memristive Systems

955

3 Switching Synchronization

958

3.1 Numerical Results

958

3.2 Exact Analytical Solution

959

4 Metastable Memristive Lines

961

4.1 Numerical Results

963

4.2 Analytical Modeling

964

4.3 Application to Logic Gates

965

References

966

34 Modeling Memristor–Based Circuit Networks on Crossbar Architectures

968

1 Introduction

969

2 Application Potential of Memristor Based Circuits

970

3 Memristor Device Modeling

971

3.1 Related Work

971

3.2 A Novel Memristor Circuit Model

972

3.3 Verification of the Proposed Model

975

4 Dynamics of Memristors in Regular Network Connections

977

4.1 Memristors Connected in Series

981

4.2 Memristors Connected in Parallel

984

5 Circuit Design Paradigm

988

5.1 Implementation of the Universal Digital Logic Gates

988

5.2 Crossbar Circuit Simulator

991

5.3 Simulation of Memristor–Based Crossbar Circuits

992

5.4 Performance Evaluation of Memristor–Based Circuits

995

6 Conclusions

997

References

997

35 Memristive In Situ Computing

1000

1 Introduction

1001

1.1 Uncertainty Mitigation for Cycle-to-Cycle Switching

1002

2 Device Dynamics

1003

3 Analog In Situ Computing

1005

3.1 Muti-stable State

1005

3.2 Plasticity and Learning

1006

3.3 Programmable Analog Circuits

1007

4 Digital In Situ Computing

1008

4.1 Complementary Resistive Switch: Diodeless Nanocrossbars

1009

4.2 CRS-Based Boolean Operations

1009

References

1013

36 Memory Effects in Multi-terminal Solid State Devices and Their Applications

1016

1 Introduction

1016

2 Generalization of the Memristive Devices

1018

2.1 Resistive RAMs

1018

2.2 Mem-Capacitive Switching Devices

1022

2.3 Mem-Inductive Switching Devices

1023

2.4 Three-Terminal Memristive Devices

1024

2.5 Four-Terminal Memristive Devices

1029

3 Applications of Resistive RAMs

1033

3.1 Standalone Memories

1033

3.2 Generic Memory Structure (GMS) for Non-volatile FPGAs

1038

3.3 Resistive Programmable TSVs

1046

4 Applications of Multi-terminal Memristive Devices

1051

4.1 Neuromorphic Circuits

1051

4.2 Current and Temperature Sensor

1052

5 Conclusions

1056

References

1056

37 A Taxonomy and Evaluation Framework for Memristive Logic

1060

1 Introduction

1061

2 Classification of Memristive Logic Families

1062

2.1 Statefulness

1063

2.2 Proximity of Computation

1064

2.3 Flexibility

1065

3 Logic-Enabled Memory and Evaluation Metrics for Memristive Logic Families

1066

3.1 Logic-Enabled Memory

1066

3.2 Evaluation Metrics

1068

4 Latency of Memristive Logic Families

1069

4.1 In-Memory Logic Families

1070

4.2 Near-Memory Logic Families

1070

4.3 Out-of-Memory Logic Families

1071

5 Energy Efficiency of Memristive Logic Families

1071

5.1 Energy of In-Memory Logic Families

1072

5.2 Energy of Near-Memory Logic Families

1074

5.3 Energy of Out-of-Memory Logic Families

1075

6 Area Evaluation of Memristive Logic Families

1075

7 Case Study: Eight-Bit Full Adder Operation

1077

7.1 In-Memory Computing: MAGIC

1077

7.2 Near-Memory Computing: MAJ

1079

7.3 Out-of-Memory Computing: FBLC

1081

8 Evaluation of Eight-Bit Addition Case Study

1083

8.1 Methodology

1083

8.2 MAGIC

1084

8.3 MAJ

1085

8.4 FBLC

1086

8.5 Analysis of Results

1087

9 Single Instruction Multiple Data (SIMD)

1088

10 Conclusions

1091

References

1092

38 Memristive Stateful Logic

1095

1 Introduction

1095

2 Basic Memristive Stateful Logic Operations

1097

2.1 Generalized Stateful Logic

1099

2.2 Keeper Circuits

1100

2.3 Stateful Logic Operations

1102

2.4 Remarks

1104

3 Synthesis of Boolean Functions

1104

3.1 Definitions

1104

3.2 Synthesis Using the Conjunctive Normal Form

1105

3.3 Synthesis Without Complementary Representation of Variables

1107

3.4 Remarks

1108

4 Stateful Logic Within a Memristive Crossbar

1109

4.1 Preventing Sneak Current Paths

1109

4.2 Example on Stateful Logic Within a Memristive Crossbar

1112

5 Concluding Remarks

1113

References

1114

39 Memristor-Based Addition and Multiplication

1116

1 Introduction

1116

2 Previous Research

1117

2.1 Memristor Switch Logic

1117

2.2 Memristors as Analog Memory

1118

2.3 Memristor Interconnect Over CMOS

1119

3 Logic Operations Via Material Implication

1120

4 A Memristor Full Adder

1121

4.1 Full Adder Realized Via Material Implication

1122

5 A Memristor Ripple Carry Adder

1124

5.1 A Ripple Carry Adder Realized Via Material Implication

1125

6 A Memristor Carry Lookahead Adder

1126

7 A Memristor Array Multiplier

1127

8 Conclusions

1128

References

1129

40 Memristor Emulators

1130

1 Memristor Emulator Requirements

1130

2 Analog Emulators of the Memristor

1133

2.1 Mutator-Based Emulators

1133

2.2 Direct-Type Emulators

1137

3 Digital and Hybrid Emulators of Memristors

1140

4 Other Types of Memristor Emulators

1142

5 Future Possible Trends in Memristor Emulation

1143

6 Conclusions

1149

References

1150

41 Computing Shortest Paths in 2D and 3D Memristive Networks

1153

1 Introduction

1153

2 Methodology

1155

2.1 Memristive Components

1155

2.2 Memristive Fuse

1155

2.3 SPICE Simulations

1156

3 Shortest Path Solution of Mazes Using 2D Memristive Networks

1156

4 Multiple Shortest Path Computations Using 2D Memristive Networks

1160

5 Shortest Path Computations Using 3D Memristive Networks

1165

6 Conclusion

1167

References

1167

42 Computing Image and Motion with 3-D Memristive Grids

1169

1 Introduction

1170

2 Background

1172

2.1 Vertebrate's Retina: Architecture and Cells

1172

2.2 Mathematical Model of Memristors

1174

2.3 Optical Flow

1176

3 Biomimetic Outer Plexiform Layer

1177

3.1 Smoothing and Local Gaussian Filtering

1179

3.2 Edge Detection

1181

3.3 Adaptation to Light Conditions

1183

3.4 Fault Tolerance

1185

4 Detecting Moving Edges With Memristive Grids

1188

4.1 Simulation Methods

1188

4.2 Detection of Moving Edges Via Memristive State Thresholding

1189

4.3 Edge Detection Based on Monitoring the Memristance Modulation Rate

1190

4.4 Adaptation to Varying Lighting Conditions

1191

4.5 Memristance Variability Tolerance

1192

5 Double Layered Memristive Network

1192

5.1 Biomimetic OPL and IPL

1193

5.2 Emulating Transient Detection

1195

5.3 Directional and Speed Detection

1197

6 Conclusion

1198

References

1199

43 Solid-State Memcapacitors and Their Applications

1203

1 Introduction

1203

2 Physical Realizations of a Memcapacitor

1205

2.1 Capacitor with Elastic Membrane Electrode

1206

2.2 Capacitor with Multiple Metal and Insulator Layers

1207

2.3 Ferroelectric Capacitor

1207

2.4 Capacitor Appended with Memristive Layer

1208

3 Applications of Memcapacitors

1212

3.1 Device Models

1212

3.2 Memory

1212

3.3 Tunable Analog and Neuromorphic Circuits

1214

3.4 CNN Cell with Memcapacitors

1215

4 Conclusions

1218

References

1219

44 Reaction-Diffusion Media with Excitable Oregonators Coupled by Memristors

1221

1 Introduction

1221

2 The Model

1222

3 Dynamic Behaviors of Memristor RD model

1225

3.1 1-D Reaction-Diffusion Medium with Memristors

1225

3.2 2-D Reaction-Diffusion Medium with Memristors

1226

4 Conclusion

1230

References

1231

45 Mimicking Physarum Space Exploration with Networks of Memristive Oscillators

1232

1 Introduction

1233

1.1 Memristors in the Focus

1233

1.2 What Is So Special About Physarum polycephalum?

1234

1.3 Shortest Path and Maze Solving Physarum Computing

1234

2 Physarum-Inspired RLCM Oscillator

1237

2.1 Voltage-Controlled Behavioral Model of a Bipolar Memristor

1237

2.2 Circuit Dynamics and Training

1239

3 Memristive Circuit and System Applications

1241

3.1 Circuit-Level Approach

1242

3.2 System-Level Approach

1249

4 Conclusions

1261

References

1262

46 Autowaves in a Lattice of Memristor-Based Cells

1266

1 Introduction

1266

2 MCNN Model

1268

3 Simulation Results

1270

4 FPGA-Based Implementation of the MCNN

1271

References

1278

47 Memristor Cellular Automata and Memristor Discrete-Time Cellular Neural Networks

1279

1 Introduction

1279

2 Cellular Automata

1280

3 Cellular Neural Networks

1282

4 Memristor

1285

5 Memristor Cell

1287

5.1 Basic Cell

1287

5.2 Logical Operations

1288

5.3 Series Connection of Memristors

1295

5.4 Asynchronous Inputs

1297

6 Memristor Cellular Automaton

1301

6.1 Rule 126 Memristor Cellular Automaton

1303

6.2 Sierpinski Memristor Cellular Automaton

1306

6.3 Totalistic Two-Dimensional Memristor Cellular Automaton

1308

6.4 Horizontal Hole Detection Memristor Cellular Automaton

1310

6.5 Edge Detection Memristor Cellular Automaton

1312

6.6 Erosion

1313

6.7 Dilation

1315

6.8 Laplacian Memristor Cellular Automaton

1317

6.9 Sharpening Filter Memristor Cellular Automaton

1319

6.10 Noise Removal Memristor Cellular Automaton

1321

6.11 Inverse Half-Toning Memristor Cellular Automaton

1323

7 Memristor Cellular Automaton with Inputs

1324

8 Memristor Discrete-Time Cellular Neural Network

1327

8.1 Dilation

1330

8.2 Erosion

1330

8.3 Edge Detection

1332

8.4 Right Edge Detection

1333

8.5 Face-Vase Illusion

1334

8.6 Shadow Projection

1336

8.7 Line Detection

1337

8.8 Selected Objects Extraction

1337

8.9 Filled Contour Extraction

1337

8.10 Horizontal Hole and Vertical Hole Detection

1338

9 Advanced Memristor DTCNN

1340

9.1 Sandpile Cellular Automaton

1343

9.2 Game of Life

1345

9.3 Multitasking Capability

1347

10 Conclusion

1351

References

1351

Index

1352