Principles of Computational Cell Biology - From Protein Complexes to Cellular Networks

Principles of Computational Cell Biology - From Protein Complexes to Cellular Networks

von: Volkhard Helms

Wiley-VCH, 2018

ISBN: 9783527810338 , 464 Seiten

2. Auflage

Format: PDF, Online Lesen

Kopierschutz: DRM

Mac OSX,Windows PC Apple iPad, Android Tablet PC's Online-Lesen für: Mac OSX,Linux,Windows PC

Preis: 79,99 EUR

eBook anfordern eBook anfordern

Mehr zum Inhalt

Principles of Computational Cell Biology - From Protein Complexes to Cellular Networks


 

Cover

1

Title Page

5

Copyright

6

Contents

7

Preface of the First Edition

17

Preface of the Second Edition

19

Chapter 1 Networks in Biological Cells

21

1.1 Some Basics About Networks

21

1.1.1 Random Networks

22

1.1.2 Small?World Phenomenon

22

1.1.3 Scale?Free Networks

23

1.2 Biological Background

24

1.2.1 Transcriptional Regulation

25

1.2.2 Cellular Components

25

1.2.3 Spatial Organization of Eukaryotic Cells into Compartments

27

1.2.4 Considered Organisms

28

1.3 Cellular Pathways

28

1.3.1 Biochemical Pathways

28

1.3.2 Enzymatic Reactions

31

1.3.3 Signal Transduction

31

1.3.4 Cell Cycle

32

1.4 Ontologies and Databases

32

1.4.1 Ontologies

32

1.4.2 Gene Ontology

33

1.4.3 Kyoto Encyclopedia of Genes and Genomes

33

1.4.4 Reactome

33

1.4.5 Brenda

34

1.4.6 DAVID

34

1.4.7 Protein Data Bank

35

1.4.8 Systems Biology Markup Language

35

1.5 Methods for Cellular Modeling

37

1.6 Summary

37

1.7 Problems

37

Bibliography

38

Chapter 2 Structures of Protein Complexes and Subcellular Structures

41

2.1 Examples of Protein Complexes

42

2.1.1 Principles of Protein–Protein Interactions

44

2.1.2 Categories of Protein Complexes

47

2.2 Complexome: The Ensemble of Protein Complexes

48

2.2.1 Complexome of Saccharomyces cerevisiae

48

2.2.2 Bacterial Protein Complexomes

50

2.2.3 Complexome of Human

51

2.3 Experimental Determination of Three?Dimensional Structures of Protein Complexes

51

2.3.1 X?ray Crystallography

52

2.3.2 NMR

54

2.3.3 Electron Crystallography/Electron Microscopy

54

2.3.4 Cryo?EM

54

2.3.5 Immunoelectron Microscopy

55

2.3.6 Fluorescence Resonance Energy Transfer

55

2.3.7 Mass Spectroscopy

56

2.4 Density Fitting

58

2.4.1 Correlation?Based Density Fitting

58

2.5 Fourier Transformation

60

2.5.1 Fourier Series

60

2.5.2 Continuous Fourier Transform

61

2.5.3 Discrete Fourier Transform

61

2.5.4 Convolution Theorem

61

2.5.5 Fast Fourier Transformation

62

2.6 Advanced Density Fitting

64

2.6.1 Laplacian Filter

65

2.7 FFT Protein–Protein Docking

66

2.8 Protein–Protein Docking Using Geometric Hashing

68

2.9 Prediction of Assemblies from Pairwise Docking

69

2.9.1 CombDock

69

2.9.2 Multi?LZerD

72

2.9.3 3D?MOSAIC

72

2.10 Electron Tomography

73

2.10.1 Reconstruction of Phantom Cell

75

2.10.2 Protein Complexes in Mycoplasma pneumoniae

75

2.11 Summary

76

2.12 Problems

77

2.12.1 Mapping of Crystal Structures into EM Maps

77

Bibliography

80

Chapter 3 Analysis of Protein–Protein Binding

83

3.1 Modeling by Homology

83

3.2 Properties of Protein–Protein Interfaces

86

3.2.1 Size and Shape

86

3.2.2 Composition of Binding Interfaces

88

3.2.3 Hot Spots

89

3.2.4 Physicochemical Properties of Protein Interfaces

91

3.2.5 Predicting Binding Affinities of Protein–Protein Complexes

92

3.2.6 Forces Important for Biomolecular Association

93

3.3 Predicting Protein–Protein Interactions

95

3.3.1 Pairing Propensities

95

3.3.2 Statistical Potentials for Amino Acid Pairs

98

3.3.3 Conservation at Protein Interfaces

99

3.3.4 Correlated Mutations at Protein Interfaces

103

3.4 Summary

106

3.5 Problems

106

Bibliography

106

Chapter 4 Algorithms on Mathematical Graphs

109

4.1 Primer on Mathematical Graphs

109

4.2 A Few Words About Algorithms and Computer Programs

110

4.2.1 Implementation of Algorithms

111

4.2.2 Classes of Algorithms

112

4.3 Data Structures for Graphs

113

4.4 Dijkstra's Algorithm

115

4.4.1 Description of the Algorithm

116

4.4.2 Pseudocode

120

4.4.3 Running Time

121

4.5 Minimum Spanning Tree

121

4.5.1 Kruskal's Algorithm

122

4.6 Graph Drawing

122

4.7 Summary

124

4.8 Problems

125

4.8.1 Force Directed Layout of Graphs

127

Bibliography

130

Chapter 5 Protein–Protein Interaction Networks – Pairwise Connectivity

131

5.1 Experimental High?Throughput Methods for Detecting Protein–Protein Interactions

131

5.1.1 Gel Electrophoresis

132

5.1.2 Two?Dimensional Gel Electrophoresis

132

5.1.3 Affinity Chromatography

133

5.1.4 Yeast Two?hybrid Screening

134

5.1.5 Synthetic Lethality

135

5.1.6 Gene Coexpression

136

5.1.7 Databases for Interaction Networks

136

5.1.8 Overlap of Interactions

136

5.1.9 Criteria to Judge the Reliability of Interaction Data

138

5.2 Bioinformatic Prediction of Protein–Protein Interactions

140

5.2.1 Analysis of Gene Order

141

5.2.2 Phylogenetic Profiling/Coevolutionary Profiling

141

5.2.2.1 Coevolution

142

5.3 Bayesian Networks for Judging the Accuracy of Interactions

144

5.3.1 Bayes' Theorem

145

5.3.2 Bayesian Network

145

5.3.3 Application of Bayesian Networks to Protein–Protein Interaction Data

146

5.3.3.1 Measurement of Reliability “Likelihood Ratio”

147

5.3.3.2 Prior and Posterior Odds

147

5.3.3.3 A Worked Example: Parameters of the Naïve Bayesian Network for Essentiality

148

5.3.3.4 Fully Connected Experimental Network

149

5.4 Protein Interaction Networks

151

5.4.1 Protein Interaction Network of Saccharomyces cerevisiae

151

5.4.2 Protein Interaction Network of Escherichia coli

151

5.4.3 Protein Interaction Network of Human

152

5.5 Protein Domain Networks

152

5.6 Summary

155

5.7 Problems

156

5.7.1 Bayesian Analysis of (Fake) Protein Complexes

156

Bibliography

158

Chapter 6 Protein–Protein Interaction Networks – Structural Hierarchies

161

6.1 Protein Interaction Graph Networks

161

6.1.1 Degree Distribution

161

6.1.2 Clustering Coefficient

163

6.2 Finding Cliques

165

6.3 Random Graphs

166

6.4 Scale?Free Graphs

167

6.5 Detecting Communities in Networks

169

6.5.1 Divisive Algorithms for Mapping onto Tree

173

6.6 Modular Decomposition

175

6.6.1 Modular Decomposition of Graphs

177

6.7 Identification of Protein Complexes

181

6.7.1 MCODE

181

6.7.2 ClusterONE

182

6.7.3 DACO

183

6.7.4 Analysis of Target Gene Coexpression

184

6.8 Network Growth Mechanisms

185

6.9 Summary

189

6.10 Problems

189

Bibliography

198

Chapter 7 Protein–DNA Interactions

201

7.1 Transcription Factors

201

7.2 Transcription Factor?Binding Sites

203

7.3 Experimental Detection of TFBS

203

7.3.1 Electrophoretic Mobility Shift Assay

203

7.3.2 DNAse Footprinting

204

7.3.3 Protein?Binding Microarrays

205

7.3.4 Chromatin Immunoprecipitation Assays

207

7.4 Position?Specific Scoring Matrices

207

7.5 Binding Free Energy Models

209

7.6 Cis?Regulatory Motifs

211

7.6.1 DACO Algorithm

212

7.7 Relating Gene Expression to Binding of Transcription Factors

212

7.8 Summary

214

7.9 Problems

214

Bibliography

215

Chapter 8 Gene Expression and Protein Synthesis

217

8.1 Regulation of Gene Transcription at Promoters

217

8.2 Experimental Analysis of Gene Expression

218

8.2.1 Real?time Polymerase Chain Reaction

219

8.2.2 Microarray Analysis

219

8.2.3 RNA?seq

221

8.3 Statistics Primer

221

8.3.1 t?Test

223

8.3.2 z?Score

223

8.3.3 Fisher's Exact Test

223

8.3.4 Mann–Whitney–Wilcoxon Rank Sum Tests

225

8.3.5 Kolmogorov–Smirnov Test

226

8.3.6 Hypergeometric Test

226

8.3.7 Multiple Testing Correction

227

8.4 Preprocessing of Data

227

8.4.1 Removal of Outlier Genes

227

8.4.2 Quantile Normalization

228

8.4.3 Log Transformation

228

8.5 Differential Expression Analysis

229

8.5.1 Volcano Plot

230

8.5.2 SAM Analysis of Microarray Data

230

8.5.3 Differential Expression Analysis of RNA?seq Data

232

8.5.3.1 Negative Binomial Distribution

233

8.5.3.2 DESeq

233

8.6 Gene Ontology

234

8.6.1 Functional Enrichment

236

8.7 Similarity of GO Terms

237

8.8 Translation of Proteins

237

8.8.1 Transcription and Translation Dynamics

238

8.9 Summary

239

8.10 Problems

240

Bibliography

244

Chapter 9 Gene Regulatory Networks

247

9.1 Gene Regulatory Networks (GRNs)

248

9.1.1 Gene Regulatory Network of E. coli

248

9.1.2 Gene Regulatory Network of S. cerevisiae

251

9.2 Graph Theoretical Models

251

9.2.1 Coexpression Networks

252

9.2.2 Bayesian Networks

253

9.3 Dynamic Models

254

9.3.1 Boolean Networks

254

9.3.2 Reverse Engineering Boolean Networks

255

9.3.3 Differential Equations Models

256

9.4 DREAM: Dialogue on Reverse Engineering Assessment and Methods

258

9.4.1 Input Function

259

9.4.2 YAYG Approach in DREAM3 Contest

260

9.5 Regulatory Motifs

264

9.5.1 Feed?forward Loop (FFL)

265

9.5.2 SIM

265

9.5.3 Densely Overlapping Region (DOR)

266

9.6 Algorithms on Gene Regulatory Networks

267

9.6.1 Key?pathway Miner Algorithm

267

9.6.2 Identifying Sets of Dominating Nodes

268

9.6.3 Minimum Dominating Set

269

9.6.4 Minimum Connected Dominating Set

269

9.7 Summary

270

9.8 Problems

271

Bibliography

274

Chapter 10 Regulatory Noncoding RNA

277

10.1 Introduction to RNAs

277

10.2 Elements of RNA Interference: siRNAs and miRNAs

279

10.3 miRNA Targets

281

10.4 Predicting miRNA Targets

284

10.5 Role of TFs and miRNAs in Gene?Regulatory Networks

284

10.6 Constructing TF/miRNA Coregulatory Networks

286

10.6.1 TFmiR Web Service

287

10.6.1.1 Construction of Candidate TF–miRNA–Gene FFLs

288

10.6.1.2 Case Study

289

10.7 Summary

290

Bibliography

290

Chapter 11 Computational Epigenetics

293

11.1 Epigenetic Modifications

293

11.1.1 DNA Methylation

293

11.1.1.1 CpG Islands

296

11.1.2 Histone Marks

297

11.1.3 Chromatin?Regulating Enzymes

298

11.1.4 Measuring DNA Methylation Levels and Histone Marks Experimentally

299

11.2 Working with Epigenetic Data

301

11.2.1 Processing of DNA Methylation Data

301

11.2.1.1 Imputation of Missing Values

301

11.2.1.2 Smoothing of DNA Methylation Data

301

11.2.2 Differential Methylation Analysis

302

11.2.3 Comethylation Analysis

303

11.2.4 Working with Data on Histone Marks

305

11.3 Chromatin States

306

11.3.1 Measuring Chromatin States

306

11.3.2 Connecting Epigenetic Marks and Gene Expression by Linear Models

307

11.3.3 Markov Models and Hidden Markov Models

308

11.3.4 Architecture of a Hidden Markov Model

310

11.3.5 Elements of an HMM

311

11.4 The Role of Epigenetics in Cellular Differentiation and Reprogramming

312

11.4.1 Short History of Stem Cell Research

313

11.4.2 Developmental Gene Regulatory Networks

313

11.5 The Role of Epigenetics in Cancer and Complex Diseases

315

11.6 Summary

316

11.7 Problems

316

Bibliography

321

Chapter 12 Metabolic Networks

323

12.1 Introduction

323

12.2 Resources on Metabolic Network Representations

326

12.3 Stoichiometric Matrix

328

12.4 Linear Algebra Primer

329

12.4.1 Matrices: Definitions and Notations

329

12.4.2 Adding, Subtracting, and Multiplying Matrices

330

12.4.3 Linear Transformations, Ranks, and Transpose

331

12.4.4 Square Matrices and Matrix Inversion

331

12.4.5 Eigenvalues of Matrices

332

12.4.6 Systems of Linear Equations

333

12.5 Flux Balance Analysis

334

12.5.1 Gene Knockouts: MOMA Algorithm

336

12.5.2 OptKnock Algorithm

338

12.6 Double Description Method

339

12.7 Extreme Pathways and Elementary Modes

344

12.7.1 Steps of the Extreme Pathway Algorithm

344

12.7.2 Analysis of Extreme Pathways

348

12.7.3 Elementary Flux Modes

349

12.7.4 Pruning Metabolic Networks: NetworkReducer

351

12.8 Minimal Cut Sets

352

12.8.1 Applications of Minimal Cut Sets

357

12.9 High?Flux Backbone

359

12.10 Summary

361

12.11 Problems

361

12.11.1 Static Network Properties: Pathways

361

Bibliography

366

Chapter 13 Kinetic Modeling of Cellular Processes

369

13.1 Biological Oscillators

369

13.2 Circadian Clocks

370

13.2.1 Role of Post?transcriptional Modifications

372

13.3 Ordinary Differential Equation Models

373

13.3.1 Examples for ODEs

374

13.4 Modeling Cellular Feedback Loops by ODEs

376

13.4.1 Protein Synthesis and Degradation: Linear Response

376

13.4.2 Phosphorylation/Dephosphorylation – Hyperbolic Response

377

13.4.3 Phosphorylation/Dephosphorylation – Buzzer

379

13.4.4 Perfect Adaptation – Sniffer

380

13.4.5 Positive Feedback – One?Way Switch

381

13.4.6 Mutual Inhibition – Toggle Switch

382

13.4.7 Negative Feedback – Homeostasis

382

13.4.8 Negative Feedback: Oscillatory Response

384

13.4.9 Cell Cycle Control System

385

13.5 Partial Differential Equations

386

13.5.1 Spatial Gradients of Signaling Activities

388

13.5.2 Reaction–Diffusion Systems

388

13.6 Dynamic Phosphorylation of Proteins

389

13.7 Summary

390

13.8 Problems

392

Bibliography

393

Chapter 14 Stochastic Processes in Biological Cells

395

14.1 Stochastic Processes

395

14.1.1 Binomial Distribution

396

14.1.2 Poisson Process

397

14.1.3 Master Equation

397

14.2 Dynamic Monte Carlo (Gillespie Algorithm)

398

14.2.1 Basic Outline of the Gillespie Method

399

14.3 Stochastic Effects in Gene Transcription

400

14.3.1 Expression of a Single Gene

400

14.3.2 Toggle Switch

401

14.4 Stochastic Modeling of a Small Molecular Network

405

14.4.1 Model System: Bacterial Photosynthesis

405

14.4.2 Pools?and?Proteins Model

406

14.4.3 Evaluating the Binding and Unbinding Kinetics

407

14.4.4 Pools of the Chromatophore Vesicle

409

14.4.5 Steady?State Regimes of the Vesicle

409

14.5 Parameter Optimization with Genetic Algorithm

412

14.6 Protein–Protein Association

415

14.7 Brownian Dynamics Simulations

416

14.8 Summary

418

14.9 Problems

420

14.9.1 Dynamic Simulations of Networks

420

Bibliography

427

Chapter 15 Integrated Cellular Networks

429

15.1 Response of Gene Regulatory Network to Outside Stimuli

430

15.2 Whole?Cell Model of Mycoplasma genitalium

432

15.3 Architecture of the Nuclear Pore Complex

436

15.4 Integrative Differential Gene Regulatory Network for Breast Cancer Identified Putative Cancer Driver Genes

436

15.5 Particle Simulations

441

15.6 Summary

443

Bibliography

444

Chapter 16 Outlook

447

Index

449