Synthesis of Therapeutic Oligonucleotides

von: Satoshi Obika, Mitsuo Sekine

Springer-Verlag, 2018

ISBN: 9789811319129 , 280 Seiten

Format: PDF, Online Lesen

Kopierschutz: Wasserzeichen

Mac OSX,Windows PC für alle DRM-fähigen eReader Apple iPad, Android Tablet PC's Online-Lesen für: Mac OSX,Linux,Windows PC

Preis: 171,19 EUR

eBook anfordern eBook anfordern

Mehr zum Inhalt

Synthesis of Therapeutic Oligonucleotides


 

Preface

5

Contents

6

Part I: Synthesis of Natural Oligonucleotides

8

Non-protected Synthesis of Oligonucleotides

9

1 Introduction

9

2 Development of Proton-Block Strategy for the Synthesis of Oligonucleotides Without Base Protection

10

3 Development of the Activated Phosphite Method Using N-Unprotected Phosphoramidites

13

4 Mechanism of the Activated Phosphite Method

17

5 Synthesis of RNA Oligomers Using the Activated Phosphite Method

18

6 Synthesis of Phosphoramidite Monomer Building Blocks

20

7 Conclusion

20

References

20

Various Coupling Agents in the Phosphoramidite Method for Oligonucleotide Synthesis

23

1 Introduction

23

2 Coupling Agents in the Phosphoramidite Method

26

2.1 1H-Tetrazole and Its Derivatives

26

2.1.1 1H-Tetrazole

26

2.1.2 5-Ethylthio-1H-tetrazole

28

2.1.3 5-Benzylthio-1H-tetrazole

29

2.1.4 5-[3,5-Bis(trifluoromethyl)phenyl]-1H-tetrazole (Activator 42)

32

2.2 4,5-Dicyanoimidazole

33

2.3 Carboxylic Acids

33

2.4 Acid/Azole Complexes

35

3 Conclusion

40

References

41

Recent Development of Chemical Synthesis of RNA

46

1 Introduction

46

2 Basic Principle of Solid-Phase Synthesis of DNA/RNA in Phosphoramidite Approach

47

3 Current RNA Synthesis Using TBDMS as 2?-Hydroxyl Protecting Group

48

4 RNA Synthesis Using Acid-Labile 2?-Hydroxyl Protecting Groups

49

5 RNA Synthesis Using 2?-Protecting Groups Having an Acetal Skeleton

51

5.1 (2-Nitrobenzyl)oxymethyl (NBOM) Group

51

5.2 2-(Trimethylsilyl)ethoxymethyl (SEM) Group

52

6 RNA Synthesis Using the Triisopropylsilyloxymethyl (Tom) Group

53

7 Cyanoethoxy-1-Methylethyl (CEE) and Cyanoethoxymethyl (CEM) Groups

54

8 RNA Synthesis Using 4-Methylphenylsulfonylethoxymethyl (TEM) Group

58

9 RNA Synthesis Using tert-Butyldithiomethyl (DTM) Group

58

10 RNA Synthesis Using [[2-(Methylthio)phenyl]thio]methyl (MPTM) Group

59

11 RNA Synthesis Using (N-Dichloroacetyl-N-methyl)aminobenzyloxylmethyl (DCMABOM) Group

60

12 RNA Synthesis Using the Acetal Levulinyl Ester (ALE) Group

62

13 RNA Synthesis Using the Cyanoethyl (CE) Group

63

14 RNA Synthesis Without Using Base Protection

65

15 Recent Studies on RNA Chemical Synthesis

65

16 Summary and Perspectives

66

References

67

RNA Synthesis Using the CEM Group

71

1 Introduction

71

2 Synthesis of CEM Amidites

72

3 Synthesis of RNA

73

4 Experimental Section

73

4.1 Preparation of CEM-SMe

73

4.2 Synthesis of U-CEM Phosphoramidite (5a.)

73

4.2.1 3?,5?-O-(Tetraisopropyldisiloxane-1,3-diyl)-2?-O-(2-cyanoethoxymethyl)uridine (2a.)

73

4.2.2 2?-O-(2-Cyanoethoxymethyl)uridine (3a.)

74

4.2.3 5?-O-(4,4?-Dimethoxytrityl)-2?-O-(2-xyanoethoxymethyl)uridine (4a.)

75

4.2.4 5?-O-(4,4?-Dimethoxytrityl)-2?-O-(2-cyanoethoxymethyl)uridine 3?-O-(2-Cyanoethyl N, N-diisopropylphosphoramidite) (5a.)

75

4.3 Synthesis of C-CEM Phosphoramidite (5b.)

76

4.3.1 4-N-Acetyl-3?, 5?-O-(tetraisopropyldisiloxane-1,3-diyl)-2?-O-(2-cyanoethoxymethyl)cytidine (2b.)

76

4.3.2 4-N-Acetyl-2?-O-(2-cyanoethoxymethyl)cytidine (3b.)

76

4.3.3 4-N-Acetyl-5?-O- (4,4?-dimethoxytrityl) -2? -O- (2-cyanoethoxymethyl)cytidine (4b.)

77

4.3.4 4-N-Acetyl-5?-O-(4,4?-dimethoxytrityl)-2?-O-(2-cyanoethoxymethyl)cytidine 3?-O-(2-cyanoethyl N, N-diisopropylphosphoramidite) (5b.)

77

4.4 Synthesis of A-CEM Phosphoramidite (5c.)

78

4.4.1 6-N-Acetyl-3?,5?-O-(tetraisopropyldisiloxane-1,3-diyl)-2?-O-(2-cyanoethoxymethyl)adenosine (2c.)

78

4.4.2 6-N-Acetyl-2?-O-(2-cyanoethoxymethyl)adenosine (3c.)

78

4.4.3 6-N-Acetyl-5?-O-(4,4?-dimethoxytrityl)-2?-O- (2-cyanoethoxymethyl)adenosine (4c.)

79

4.4.4 6-N-Acetyl-5?-O-(4,4?-dimethoxytrityl)-2?-O-(2-cyanoethoxymethyl)adenosine 3?-O-(2-Cyanoethyl N, N-diisopropylphosphoramidite) (5c.)

79

4.5 Synthesis of CEM-G Phosphoramidite (5d.)

80

4.5.1 2N-Phenoxyacetyl-3?,5?-O-(tetraisopropyldisiloxane-1,3-diyl)-2?-O-(2-cyanoethoxymethyl)guanosine (2d.)

80

4.5.2 2N-Phenoxyacetyl-2?-O-(2-cyanoethoxymethyl)guanosine (3d.)

80

4.5.3 2N-Phenoxyacetyl -5?-O- (4,4?-dimethoxytrityl) -2? -O- (2-cyanoethoxymethyl)guanosine (4d.)

81

4.5.4 2N-Phenoxyacetyl-5?-O-(4,4?-dimethoxytrityl)-2?-O-(2-cyanoethoxymethyl)guanosine 3?-O-(2-Cyanoethyl N, N-diisopropylphosphoramidite) (5d.)

81

4.6 Synthesis of CEM-I Phosphoramidite (5e.)

82

4.6.1 3?,5?-O-(Tetraisopropyldisiloxane-1,3-Diyl)-2?-O-(2-cyanoethoxymethyl)inosine (2e.)

82

4.6.2 2?-O-(2-Cyanoethoxymethyl)inosine (3e.)

82

4.6.3 5?-O- (4,4?-Dimethoxytrityl) -2? -O-(2-cyanoethoxymethyl)inosine (4e.)

82

4.6.4 5?-O-(4,4?-Dimethoxytrityl)-2?-O-(2-cyanoethoxymethyl)inosine 3?-O-(2-Cyanoethyl N, N-diisopropylphosphoramidite) (5e.)

83

4.7 Synthesis of Oligoribonucleotide

83

4.8 Cleavage and Deprotection

84

References

85

Liquid-Phase Synthesis of Oligonucleotides

86

1 Introduction

86

2 PEG-Based Liquid-Phase Synthesis

87

3 Non-polymeric Anchor-Assisted Synthesis

89

3.1 Ionic Liquid Tag-Assisted Synthesis

89

3.2 Fluorous Tag-Assisted Synthesis

90

3.3 Tetravalent Cluster Approach

90

3.4 Adamntylmethylester Synthesis

91

3.5 Alkyl Chain-Assisted Synthesis

91

4 Other Approaches

91

4.1 Product Anchored Sequential Synthesis (PASS) Method

91

4.2 Solution-Phase Synthesis Using Polymer-Supported Reagents

92

5 AJIPHASE® for Oligonucleotide Synthesis

93

6 Conclusion

96

References

96

Large-Scale Oligonucleotide Manufacturing

99

1 Manufacturing Process for Therapeutic Oligonucleotides

99

1.1 Oligonucleotide Synthesis

100

1.1.1 Solid Support

100

1.1.2 Synthesizer

102

1.2 Oligonucleotide Cleavage and Deprotection

103

1.3 Oligonucleotide Chromatography

104

1.4 Oligonucleotide Ultrafiltration and Diafiltration

106

1.5 Oligonucleotide Lyophilization

107

2 Small-Scale Modeling for Oligonucleotide Manufacturing

108

2.1 Case Study 1 (Synthesis)

109

2.2 Case Study 2 (C&D)

110

2.3 Case Study 3 (Purification)

112

References

113

Part II: Synthesis and Properties of Artificial Oligonucleotides

115

Nucleosides and Oligonucleotides Incorporating 2-Thiothymine or 2-Thiouracil Derivatives as Modified Nucleobases

116

1 Purposes of the Thio Modification of Uracil and Thymine

117

2 Physicochemical Similarities and Differences Between Oxygen and Sulfur

118

2.1 Atom Sizes

118

2.2 Electronic Properties

119

3 Physicochemical Properties of 2-Thiouracil and 2-Thiothymine

119

3.1 Intrinsic Hydrogen Bonding Ability of s2Ura and s2Thy

119

3.2 Stacking Interactions of s2Ura

121

3.3 ‘Rigid’ Sugar Conformation of 2-Thiouridine (s2U) and 2-Thiothymidine (s2T) Derivatives

122

3.4 Conformational Properties of Single Stranded Oligonucleotides Incorporating 2-Thiouridine

122

3.5 Hybridization Ability of Oligonucleotides Incorporating 2-Thiouridine Derivatives

123

3.6 Base Discrimination of 2-Thiouridine Derivatives in a Duplex

124

3.7 Application of 2-Thiouridine Derivatives as Nucleic Acid Drugs

125

4 Chemical Synthesis of 2-Thiouridine Derivatives and Their Incorporation into Oligonucleotides

125

4.1 Synthesis of 2-Thiouridine and 2-Thiothymidine by Glycosylation

125

4.2 Synthesis of 2-Thiouridine Derivatives Form Uridine Derivatives

126

4.3 Synthesis of the Phosphoramidites of 2-Thiothymidine and 2-Thiouridine Derivatives and Their Use in Oligonucleotide Synthesis

128

References

130

Site-Specific Modification of Nucleobases in Oligonucleotides

132

1 Introduction

132

2 Modifications at the 2- or 4-Positions of Pyrimidine Nucleobases

134

3 Modifications at the 2- or 6-Positions of Purine Nucleobases

136

4 Other Modifications in Nucleobase Units

137

5 Experimental Example: N,N-Disubstituted Cytosine Nucleobases

139

6 Summary

142

References

142

Four-Hydrogen-Bonding Base Pairs in Oligonucleotides: Design, Synthesis, and Properties

147

1 Introduction

148

2 Designing Four-H-Bonding DNA Base Pairs

150

2.1 Size-Expanded Im:Im Base Pairs

150

2.2 Design of Im:Na Base Pairs with Comparable Shape Complementarity to That of WC Base Pairs

153

3 Creation of a Thermally Stabilized Decoy Molecule with Im:Na Pairs

155

4 Polymerase Reactions Involving the Im:Na Pair

157

4.1 Enzymatic Replication of Im:Na Pairs by DNA Polymerases

157

4.2 Transcription System with an Alternative Genetic Set Im:Na Pair

163

5 Conclusion and Perspective

165

References

166

Photo-Cross-Linkable Artificial Nucleic Acid: Synthesis and Properties of 3-Cyanovinylcarbazole-Modified Nucleic Acids and Its Photo-Induced Gene-Silencing Activity in Cells

170

1 Introduction

170

2 Synthesis of 3-Cyanovinylcarbazole-Based Photo-Cross-Linker

172

2.1 Synthetic Procedures of CNVK and Its Phosphoramidite Monomer

174

2.1.1 3-Iodocarbazole (2)

174

2.1.2 3-Cyanovinylcarbazole (3)

174

2.1.3 3-Cyanovinylcarbazole-9-yl-1?-?-deoxyriboside-3?,5?-di-(P-toluoyl)ester (4)

174

2.1.4 3-Cyanovinylcarbazole-9-yl-1?-?-deoxyriboside (5)

175

2.1.5 5?-O-(4,4?-Dimethoxytrityl)-3-cyanovinylcarbazole-9-yl-1?-? -deoxyriboside (6)

175

2.1.6 5?-O-(4,4?-Dimethoxytrityl)-3-cyanovinylcarbazole-9-yl-1?-? -deoxyriboside-3?-O-(cyanoethoxy-N,N-diisopropylamino)phosphoramidite (7)

175

2.2 Synthetic Procedures of CNVD and Its Phosphoramidite Monomer

175

2.2.1 Ethyl 3-cyanovinylcarbazol-9-yl-acetate (8)

175

2.2.2 3-Cyanovinylcarbazol-9-yl-acetic Acid (9)

176

2.2.3 N-(3-Cyanovinylcarbazol-9-yl-acetyl)-D-threoninol (10, CNVD)

176

2.2.4 N-(3-Cyanovinylcarbazol-9-yl-acetyl)-1?-O-(4,4?-dimethoxytrityl)-D-threoninol (11)

176

2.2.5 N-(3-Cyanovinylcarbazol-9-yl-acetyl)-1?-O-(4,4?-dimethoxytrityl)-D-threoninol 3?-O-(Cyanoethoxy-N,N-diisopropylamino)phosphoramidite (12)

176

2.3 Synthesis of the Oligonucleotide Having CNVK or CNVD

177

2.4 Further Modification of CNVK- or CNVD-Modified ODNs

177

3 Inter-Strand Photo-Cross-Linking Using ODNs Having CNVK or CNVD

177

3.1 Properties of the Inter-Strand Photo-Cross-Linking Reaction of CNVK and CNVD in Nucleic Acid Double Strands

178

3.2 Light Source

179

3.3 Structural Insight of the DNA Duplex Including CNVK

179

4 Gene-Silencing Using CNVK Modified Antisense ODNs

180

4.1 Design of the Photoreactive Antisense ODNs Having CNVK

181

4.2 Evaluation of the Photo-Cross-Linking Reaction with mRNA

181

4.3 Photo-Induced Gene Silencing in Cells

182

5 Summary

183

References

183

Effects of 2?-O-Modifications on RNA Duplex Stability

186

1 Introduction

186

2 Effects of Modifications on RNA Duplex Stability

187

2.1 Preorganization of RNA

187

2.2 Hydration Effect

188

2.3 Electrostatic Effect

189

2.4 Effect of Substituent Size

189

3 Computational Approach to Design Novel Modifications

190

4 Discussion

194

5 Conclusion

195

References

195

2?,4?-Bridged Nucleic Acids Containing Plural Heteroatoms in the Bridge Moiety

199

1 Introduction

199

2 Five-Membered Bridged Nucleic Acids

200

3 Six-Membered Bridged Nucleic Acids

207

4 Seven-Membered Bridged Nucleic Acids

212

5 Summary

215

References

215

Synthesis and Therapeutic Applications of Oligonucleotides Containing 2?-O,4?-C-Ethylene- and 3?-O,4?-C-Propylene-Bridged Nucleotides

220

1 Introduction

221

1.1 Structural Properties of 2'-O,4'-C-Ethylene-Bridged Nucleic Acids (ENA) and 2'-O,4'-C-Propylene-Bridged Nucleic Acids (PrNA) Residues

221

1.2 Properties of Oligonucleotides Containing ENA and PrNA Residues

222

1.3 Therapeutic Applications of Oligonucleotides Containing ENA Residues

224

1.4 The Development of Novel 2-5A Analogs Containing 3'-O,4'-C-Alkylene-Bridged Nucleosides as a Therapeutic Reagent

224

1.5 Synthesis of 3'-O,4'-C-Propylene Adenosine as the Potent Modified Unit for 2-5A Analog

225

1.6 Synthesis of 2-5A Analog 1 Using DNA/RNA Autosynthesizer

226

1.7 In Vitro Activity of 2-5A Analog 1 in Cancer Cells

227

References

228

RNA Bioisosteres: Chemistry and Properties of 4?-thioRNA and 4?-selenoRNA

230

1 Introduction

231

2 Chemistry and Properties of 4?-thioRNA

232

2.1 Stereoselective Synthesis of 4'-thioribonucleosides

232

2.2 Synthesis and Properties of 4?-thioRNA

233

3 Biological Applications of 4?-thioRNA

236

3.1 Application of 4'-thioRNA for Chemically Modified siRNA

237

3.2 Application to Isolation of 4'-thioRNA Aptamers

240

4 Chemistry for the Synthesis of 4?-selenoRNA

242

4.1 Practical Synthesis of 4'-selenoribonucleosides

242

4.2 Synthetic Study of 4'-selenoRNA

244

5 Conclusion and Perspective

246

References

247

Development of Triplex Forming Oligonucleotide Including Artificial Nucleoside Analogues for the Antigene Strategy

250

1 Introduction

250

2 Design of W-shaped Nucleoside Analogues (WNAs) for TA Inversion Site

252

2.1 Synthesis of Oligonucleotides Including WNAs (WNA-?T)

253

2.2 Evaluation of Triplex Formation

254

2.3 Antiploriferative Effect and Inhibition of Gene Expression Product for A549 Cells

255

3 Design of Pseudo-dC Derivatives (MeAP-?dC) for CG Inversion Site

257

3.1 Synthesis of Oligonucleotides Including ?dC Derivatives (MeAP-?dC)

258

3.2 Evaluation of Triplex Formation

259

3.3 Speculation of the Recognition Model of MeAP-?dC/CG Triplet

260

3.4 Inhibition of Transcription of the hTERT Gene in HeLa Cells

261

4 Conclusion and Perspectives

264

References

264

Chemical Synthesis of Boranophosphate Deoxy-ribonucleotides

267

1 Introduction

267

2 Synthesis of Boranophosphate DNA by the Phosphoramidite Approach

268

3 Synthesis of Boranophosphate DNA by the H-phosphonate Approach

271

4 Synthesis of Boranophosphate DNA by the Boranophospho-Triester Approach

273

5 Synthesis of Boranophosphate DNA by the H-boranophospho-nate Approach

274

6 Stereocontrolled Synthesis of Boranophosphate DNA by the Oxazaphospholidine Approach

275

7 Summary and Perspectives

278

References

278