Orthopedic Biomaterials - Progress in Biology, Manufacturing, and Industry Perspectives

von: Bingyun Li, Thomas Webster

Springer-Verlag, 2018

ISBN: 9783319895420 , 495 Seiten

Format: PDF, Online Lesen

Kopierschutz: Wasserzeichen

Mac OSX,Windows PC für alle DRM-fähigen eReader Apple iPad, Android Tablet PC's Online-Lesen für: Mac OSX,Linux,Windows PC

Preis: 234,33 EUR

eBook anfordern eBook anfordern

Mehr zum Inhalt

Orthopedic Biomaterials - Progress in Biology, Manufacturing, and Industry Perspectives


 

Preface

5

Contents

6

Part I: Design, Manufacturing, Assessment, and Applications

8

Nanotechnology for Orthopedic Applications: From Manufacturing Processes to Clinical Applications

9

1 Introduction

9

2 The Extracellular Matrix (ECM)

9

2.1 ECM Composition

10

2.2 The ECM as a Molecular Reservoir

10

2.3 Cell-ECM Interactions

11

2.4 Bone

13

2.4.1 Cortical Bone

13

2.4.2 Cancellous Bone

13

3 Tissue Engineering

14

3.1 Nanotechnology for Tissue Engineering

14

3.2 Control of Cell Functions Using Nanotechnology

16

3.3 Cell Sensitivity to Nanofeatures

17

3.4 Important Features of Scaffolds for Tissue Engineering

17

3.5 Materials for Scaffold Construction

17

4 Unmet Clinical Need

18

4.1 Substrate Properties for Osseointegration

19

4.2 Substrate Properties to Resist Bacterial Infection

19

4.2.1 Shot Peened 316 L Stainless Steel

20

4.2.2 Electrophoretic Deposition

21

5 Conclusions

22

References

23

Additive Manufacturing of Orthopedic Implants

27

1 Introduction

27

2 Additive Manufacturing Techniques

28

2.1 Binder Jetting

29

2.2 Directed Energy Deposition (DED)

31

2.3 Powder Bed Fusion (PBF)

32

2.4 Material Extrusion

34

3 Additively Manufactured Biomaterials

35

3.1 Metallic Biomaterials

35

3.1.1 Stainless Steel

36

3.1.2 Co-Cr Alloys

37

3.1.3 Titanium Alloys

38

3.1.4 Tantalum

39

3.2 Other Biomaterials

39

3.2.1 PEEK

39

3.2.2 Ceramics

40

4 AM Design Considerations

41

4.1 Patient-Specific Design Procedures

43

4.2 Porosity

44

4.3 Clinical Applications

45

4.4 Patient Variability

45

4.5 Shoulder and Other Joint Replacements

46

4.6 Fracture Fixation

49

4.7 Large Bone Defects

52

4.8 Surgical Guides

53

4.9 Additional Clinical Examples

54

5 Summary

55

References

57

3D Printed Porous Bone Constructs

62

1 Introduction

62

2 3D Printing Techniques

63

3 Porous Materials for Cell Growth

65

4 3D Printing of Porous Ceramic Materials

65

5 3D Printing of Porous Metal Materials

67

6 3D Printing of Porous Polymer Materials

68

7 Conclusions

69

References

69

Biopolymer Based Interfacial Tissue Engineering for Arthritis

72

1 Introduction

72

2 Anatomy of Osteochondral Tissue Interface

73

3 Conventional Vs. Interfacial Tissue Engineering

75

4 Polymeric Biomaterials for Interfacial Tissue Engineering

78

5 Design Considerations for Interfacial Tissue Engineering

83

5.1 Stratified Scaffold Design

83

5.2 Gradient Scaffold Design

85

6 Present Clinical Status of Interfacial Tissue Engineering

87

7 Future Perspectives of Interfacial Tissue Engineering in Orthopedic Applications

87

8 Conclusion

88

References

88

Performance of Bore-Cone Taper Junctions on Explanted Total Knee Replacements with Modular Stem Extensions: Mechanical Disassembly and Corrosion Analysis of Two Designs

94

1 Introduction

94

2 Materials and Methods

96

2.1 Implant Retrieval and Archiving

96

2.2 Assessment of Surface Corrosion Area

98

2.3 Damage Mode Characterization

102

2.4 Data Analysis

105

3 Results

105

4 Discussion

109

4.1 Effects of Design and Modes of Corrosion

109

4.2 Effects of Patient Factors and Anatomical Location

110

4.3 Mechanical Disassembly and Surface Corrosion Area

110

4.4 Limitations

111

5 Conclusion

111

References

112

Wear Simulation Testing for Joint Implants

115

1 Introduction: Why Joint Simulator?

115

2 What Is a Joint Simulator?

116

3 Types of Joint Simulators

117

4 Current Wear Simulation Standards

120

5 The Achievement of Wear Simulation

121

6 The Limitation of Wear Simulation

122

7 Conclusions

123

References

124

Mechanical Stimulation Methods for Cartilage Tissue Engineering

126

1 Cartilage Anatomy

126

2 Cartilage as a Material

127

3 Cartilage Tissue Engineering

129

4 Dynamic Loading Scenarios for Mechanical Stimulation

132

4.1 Compression

132

4.1.1 Confined Compression

133

4.1.2 Unconfined Compression

133

4.1.3 Indentation

135

4.2 Tension

135

4.2.1 Uniaxial

135

4.2.2 Biaxial or Multiaxial

136

4.3 Shear

136

4.3.1 Hydrodynamic Shear

137

4.3.2 Mechanical Shear

137

4.4 Friction

138

4.5 Vibration

139

4.5.1 High-Frequency Ultrasonic Vibration

139

4.5.2 Lower-Frequency Mechanical Vibrations

139

5 General Drawbacks of Mechanical Stimulation

140

6 Mixed Mode Loading

142

6.1 Compression and Shear

143

6.2 Compression and Vibration

143

7 Future Directions

145

References

146

Mechanically Assisted Electrochemical Degradation of Alumina-TiC Composites

151

1 Introduction

151

2 Methods and Materials

154

2.1 Brushing Abrasion Setup

154

2.2 Sample Preparation

155

2.3 Electrochemical Measurements

156

2.4 Brushing Abrasion Testing

156

2.4.1 Effect of Brushing Acceleration and Speed

156

2.4.2 Effect of Temperature

157

2.4.3 Effect of Environment

157

2.5 Electrochemical Impedance Study

157

2.6 Surface Characterization

158

2.7 Chemical Analysis

158

3 Results and Discussion

159

3.1 Electrochemical Response to Brushing Abrasion

159

3.2 Surface Characterization

162

3.3 Chemical Analysis

165

3.4 Electrochemical Impedance Data Analysis

167

3.5 Understanding the Degradation Mechanism of Alumina-TiC Composite

169

4 Conclusions

171

References

171

Part II: Biology and Clinical and Industrial Perspectives

174

Biomaterials in Total Joint Arthroplasty

175

1 Introduction

175

2 Stability

177

3 Sterility

178

4 Survivability

179

5 Bearing Surfaces: Polyethylene

179

5.1 Polyethylene Then

179

5.2 Polyethylene Now

181

5.3 Polyethylene: Case Reports 1–4 (Figs. 3, 4, 5 and 6)

184

6 Bearing Surfaces: Metal

187

6.1 Metal Then

187

6.2 Metal Now

189

6.3 Metal on Metal: Case Report 5 and 6 (Figs. 7 and 8)

190

7 Bearing Surfaces: Ceramic

192

7.1 Ceramic Then

192

7.2 Ceramic Now

193

7.3 Ceramic: Case Report 7 (Fig. 9)

194

8 Conclusion

195

References

195

Modulating Innate Inflammatory Reactions in the Application of Orthopedic Biomaterials

199

1 Introduction

200

2 Inflammation and Immunomodulating Strategy

201

2.1 Innate Immune Response and Macrophages

201

2.2 Macrophage Polarization

202

2.3 Interaction Between Macrophages and Orthopedic Biomaterials

203

2.4 Modulation of Macrophage-Mediated Pro-Inflammatory Response

203

3 Sequential Modulation of Inflammatory Response for Optimal Bone Regeneration/Osseointegration

206

3.1 Essential Role of Acute Inflammation in Bone Regeneration

206

3.2 Transition of Macrophage Polarization Status for Optimal Bone Formation

207

4 Application of Immunomodulating Reagents on Orthopedic Biomaterials

208

4.1 Protein-Based Biomolecules

209

4.2 Nucleic Acid

209

4.3 Small Molecules

210

4.4 Cell-Based Therapy

211

5 Conclusion

211

References

212

Anti-Infection Technologies for Orthopedic Implants: Materials and Considerations for Commercial Development

219

1 Introduction

219

2 Working Theories of Implant Related Infection

220

3 Current Clinical Options

222

4 Biomaterial Strategies for Infection Prevention

222

4.1 Passive Surface Modification

223

4.1.1 Nanotopography

224

4.1.2 Photocatalytic Titanium Oxide

224

4.1.3 Covalently Bound Antimicrobials

225

4.2 Active Surface Modification

226

4.2.1 Antibiotic Bone Cement

226

4.2.2 Antibiotic Coated Implants

227

4.2.3 Bone Graft Substitutes with Antibiotics

228

4.2.4 Antimicrobial Silver Coatings

229

Silver Antimicrobial Mechanism of Action

229

Current Commercial Products with Antimicrobial Silver

229

Silver Coating Technologies in Development

230

Potential for Toxicity of Silver in Orthopedics

231

4.2.5 Antimicrobial Iodine Coatings

232

4.3 Perioperative Local Antibiotics

232

4.3.1 Direct Local Application of Antibiotics

232

4.3.2 Local Antibiotic Carriers

233

5 Regulatory and Commercial Considerations

234

5.1 Preclinical Data

234

5.2 Regulatory and Market Hurdles

235

6 Summary

236

References

236

Platelet Rich Plasma: Biology and Clinical Usage in Orthopedics

243

1 Introduction

243

2 Biology of Platelet Rich Plasma

244

2.1 What is PRP (PRP Definition)?

244

2.2 Principles for PRP Isolation and Classification

244

2.2.1 Principle for PRP Isolation

246

2.2.2 PRP Classification

247

2.3 Biologics of PRP

249

2.3.1 Platelet and Platelet Released Factors

250

Platelet Alpha Granules

251

Dense Granules

251

The Lambda Granules

252

Regulation of Platelet Secretion

252

2.3.2 Leukocytes

253

2.3.3 Red Blood Cells

253

2.3.4 Extracellular Vehicles (EVs)

254

3 Clinical Applications of Platelet-Rich Plasma in Orthopedics Surgery

255

3.1 Tendons

256

3.2 ligament

268

3.3 Cartilage

271

3.4 Muscle

276

3.5 Minimum Information for Studies Evaluating Biologics in Orthopedics (MIBO)

278

3.6 In Summary

279

References

279

Bioresorbable Materials for Orthopedic Applications (Lactide and Glycolide Based)

287

1 Introduction

287

2 Bioresorbable Polymers

290

2.1 Poly(glycolic acid) (PGA)

290

2.2 Poly(lactic acid) (PLA)

291

2.3 Poly(lactic-co-glycolic acid) (PLGA)

293

2.4 Polycaprolactone (PCL)

293

2.5 Polydioxanone (PDO)

294

3 Bioresorbable Degradation

295

3.1 Factors Affecting Degradation

297

3.1.1 Inherent Polymer Factors

297

3.1.2 Secondary Ingredients

299

4 Mechanical Performance

299

4.1 Factors Affecting Mechanical Performance

300

4.2 Mechanical Enhancement via Additives.

301

4.3 Effect of Implant Design on Mechanical Performance

302

5 Bioactivity

303

5.1 Inorganic Additives

304

5.1.1 Calcium Phosphate Based

304

Hydroxyapatite (HA)

304

Tricalcium Phosphate (TCP)

305

Biphasic Calcium Phosphate (BCP)

305

Calcium Sulfate

305

5.2 Other Additives

306

6 Biocompatibility

307

7 Processing and Fabrication

308

7.1 Material Effect on Pre-Processing and Processing

309

7.2 Conventional Processing Methods

310

7.2.1 Extrusion

310

7.2.2 Injection Molding

313

7.2.3 Compression Molding

315

7.3 Novel Methods (Additive Manufacturing)

316

7.3.1 Fused Deposition Modelling (FDM)

316

7.3.2 Selective Laser Sintering (SLS)

318

7.4 Other Methods

320

7.4.1 Electrospinning

321

7.5 Effect of Post-Processing

322

7.5.1 Annealing

322

7.5.2 Sterilization

323

8 Current Applications

324

8.1 Craniomaxillofacial (CMF)

326

8.2 Sutures and Suture Anchors

327

8.3 Interference Screw

330

8.4 Distal Radius Plate

332

9 Regenerative Medicine

333

10 Conclusion

336

References

336

The Role of Polymer Additives in Enhancing the Response of Calcium Phosphate Cement

345

1 Introduction

345

2 Advantages of Calcium Phosphate Cement

347

3 Disadvantages of Calcium Phosphate Cement

348

4 Calcium Phosphate Applications

348

5 Calcium Phosphate Additives and Setting Time

349

5.1 Chitosan

350

5.2 Fibrin Glue

351

5.3 Gelatin

351

5.4 Collagen

352

5.5 Polyethylene Glycol (PEG)

352

6 Calcium Phosphate Additives: Material and Mechanical Properties

352

6.1 Natural Polymers

352

6.1.1 Alginate

353

6.1.2 Chitosan

353

6.2 Synthetic Polymers

354

6.2.1 Polyacrylic Acid

354

6.2.2 Polycaprolactone

354

6.2.3 Polylactic Acid (PLA)

355

6.2.4 Poly(lactic-co-glycolic) Acid

356

6.3 Carbon Nanotubes, Clay Nanoparticles and Graphene

357

6.3.1 Carbon Nanotubes

357

6.3.2 Clay Nanoparticles

357

6.3.3 Halloysite Nanotubes

357

6.3.4 Laponite

358

6.3.5 Montmorillonite (MT)

359

6.3.6 Graphene

359

6.4 Natural Fibrous Material

360

6.4.1 Cellulose

360

6.4.2 Collagen

360

7 Calcium Phosphate: Injectability

360

8 Calcium Phosphate: Biological Response

361

8.1 CPC/Growth Factor/Polymer Composites for Cell Growth and Functionality

361

8.2 CPC/polymer Composites for Cell Encapsulation

363

8.3 Bioactive Glass and Silica Materials

365

8.3.1 Bioactive Glass

365

8.3.2 Silica Materials

365

8.4 Metal Nanoparticles

366

8.4.1 Copper and Zinc

366

8.4.2 Magnesium

366

8.4.3 Zirconia

367

9 Future Studies

367

References

368

Biological Fixation: The Role of Screw Surface Design

380

1 Introduction

380

2 History

382

3 A Brief Review of Common Orthopedic Materials

385

4 A Brief Overview of Peri-implant Bone Healing

386

5 How Topography Affects Anchorage of an Implant in Bone

388

5.1 Implant Surface Nanotopography

389

5.2 Implant Surface Microtopography

392

5.3 Implant Macrotopography and Geometry

393

6 Conclusion

395

References

396

Fracture Fixation Biomechanics and Biomaterials

400

1 Clinical Aspects

400

1.1 Introduction

400

1.2 Types of Implants

401

1.3 Anatomical Constraints

404

2 Fracture Healing Biology

405

2.1 Fracture Healing

405

2.2 Infection

408

3 Biomechanics

408

3.1 Implant Loading

408

3.2 Implant Stress and Failure

409

3.3 Fracture Gap Strain

411

3.4 Biomechanical Variables

413

4 Biomaterials

414

4.1 Stainless Steel Vs. Titanium alloys & Other Materials

414

4.2 Biocompatibility

414

4.3 Corrosion

415

5 Experimental and Computational Modeling of Fracture Fixation Mechanics

416

5.1 Experimental

417

5.2 Computational

418

6 Internal Plating

419

7 Intramedullary Nailing

421

8 Perspective

423

References

424

Biomaterials for Bone Tissue Engineering: Recent Advances and Challenges

428

1 Introduction

428

2 Tissue Engineering

429

3 Bone

430

3.1 Structure and Composition of Bone

430

3.2 Types of Bone

430

4 Stem Cells for Tissue Engineering

431

4.1 Embryonic Stem Cells

431

4.2 Adult Stem Cells

432

4.3 Mesenchymal Stem Cells (MSCs)

432

5 Scaffold

432

6 Scaffold Fabrication Techniques

433

6.1 Particulate-Leaching Technique

434

6.2 Gas Foaming

434

6.3 Lyophilization

434

6.3.1 Solid-Liquid Phase Separation

434

6.3.2 Liquid-Liquid Phase Separation

435

6.4 Electro-Spinning

435

6.5 Solid Freeform Fabrication Technique (SFFT)

436

7 Structural Design

437

7.1 Porosity

437

7.2 Pore Size

437

8 Mechanical Properties

438

9 Composite Scaffold Material

439

9.1 Synthetic Biopolymer/CaP Composite Scaffold

440

9.2 Natural Biopolymer/Bioactive Ceramic Based Composite

441

10 Challenges and Opportunities

444

10.1 Mechanical Integrity of Porous Scaffolds

444

10.2 In vitro Degradation

445

10.3 In vitro and In vivo Characterization

445

11 Discussion and Future Aspects

445

References

446

Progress of Bioceramic and Bioglass Bone Scaffolds for Load-Bearing Applications

452

1 Introduction

452

2 Design Concepts

453

2.1 Microstructure Design: Micropore Size, Microporosity, Grain Size/Morphology and Second Phase

454

2.1.1 Pore Size

454

2.1.2 Porosity

456

2.1.3 Grain Size and Morphology

459

2.1.4 Second Phase Teinforcement

459

2.2 Macrostructure Design: Macropore Shape, Pore size, Macroporosity and Pore Connecting Part Width

460

2.2.1 Pore Shape

460

2.2.2 Pore Size and Pore Connecting Part Width

462

2.2.3 Macroporosity

463

3 Manufacturing Methods

463

3.1 3D printing

464

3.2 Freeze Casting

468

3.3 Slip Casting (Polymer Template Burn-Out)

471

3.4 Thermally Bonding of Particles

472

4 In Vitro Characterization of Load-Bearing Capacity

473

5 In Vivo Assessment via Load Bearing Bone Defect Model

478

6 Bioinspiration Design and Future Perspectives

479

References

480

Index

486