Dynamic Spin-Fluctuation Theory of Metallic Magnetism

von: Nikolai B. Melnikov, Boris I. Reser

Springer-Verlag, 2018

ISBN: 9783319929743 , 284 Seiten

Format: PDF, Online Lesen

Kopierschutz: Wasserzeichen

Mac OSX,Windows PC für alle DRM-fähigen eReader Apple iPad, Android Tablet PC's Online-Lesen für: Mac OSX,Linux,Windows PC

Preis: 96,29 EUR

eBook anfordern eBook anfordern

Mehr zum Inhalt

Dynamic Spin-Fluctuation Theory of Metallic Magnetism


 

Preface

6

Contents

7

List of Symbols

11

1 Introduction

17

References

20

2 Basics of Metallic Magnetism

22

2.1 Magnetic Susceptibility: Macroscopic Approach

22

2.1.1 Generalized Magnetic Susceptibility

22

2.1.2 Symmetry Relations

24

2.1.3 Dispersion Relations

25

2.2 Magnetic Susceptibility: Microscopic Approach

26

2.2.1 Magnetization and Spin

26

2.2.2 Linear Response Theory

28

2.2.3 Fluctuation-Dissipation Theorem

31

References

34

3 Many-Electron Problem

35

3.1 One-Electron States

35

3.2 Many-Electron States

37

3.3 Second Quantization

38

3.3.1 General Theory

38

3.3.2 Specific Operators

39

Charge Density

39

Spin Density: Wannier Representation

40

Spin Density: Bloch Representation

41

Single-Site Spin

42

Hamiltonian

42

3.4 Noninteracting Electrons

43

References

47

4 Mean-Field Theory

48

4.1 The Hubbard Model

48

4.2 Stoner Mean-Field Theory

50

4.2.1 Hartree-Fock Approximation

50

4.2.2 Magnetization: The T2 Law

52

4.2.3 Uniform Static Susceptibility

54

4.3 Band Calculations in Metals

55

References

56

5 Random-Phase Approximation

57

5.1 Magnetic Susceptibilities

57

5.1.1 Longitudinal Susceptibility

57

5.1.2 Transverse Susceptibility

60

5.2 Magnetic Excitations

62

5.2.1 Spin-Density Waves

62

5.2.2 Magnetization: The T3/2 Law

65

5.2.3 Stoner Spin-Flip Excitations

67

References

68

6 Green Functions at Finite Temperatures

70

6.1 Fermion-Type Green Functions

70

6.1.1 Real-Time Green Function

70

General Properties

70

Equation of Motion

71

Spectral Function

72

6.1.2 Temperature Green Function

74

Relation with Charge and Spin Density

74

Relation with the Real-Time Green Function

75

6.2 Boson-Type Green Functions

76

6.2.1 Dynamic Susceptibility

77

Longitudinal Susceptibility

77

Transverse Susceptibility

79

6.2.2 Thermodynamic Susceptibility

81

Relation with the Spin Correlator

81

Relation with the Dynamic Susceptibility

82

Noninteracting Electrons

83

Summation Rule

84

Measurement and Calculation Methods

85

References

86

7 Spin Fluctuation Theory in the Ising Model

87

7.1 Spins in the Fluctuating Field

87

7.2 Approximations of the Free Energy

89

7.2.1 Quadratic Part of the Free Energy

89

7.2.2 Higher-Order Terms of the Free Energy

90

7.3 Local Fluctuating Field

91

7.4 Magnetic Phase Diagrams

92

References

94

8 Functional Integral Method

95

8.1 Multiband Hubbard Hamiltonian

95

8.1.1 Intraatomic Interaction and Hund's Rule

95

8.1.2 Atomic Charge and Spin Density

97

8.2 Functional Integral over Fluctuating Fields

99

8.2.1 Thermodynamic ``Time'' Dependence

99

8.2.2 Electrons in the Fluctuating Field

100

8.2.3 Charge Fluctuations

102

8.3 Exact Relations

104

8.3.1 Field-Dependent Thermodynamic Potential

104

8.3.2 Mean Spin and Spin-Density Correlator

107

References

108

9 Gaussian Approximation

110

9.1 Motivation

110

9.2 Saddle-Point Approximation

111

9.3 Free Energy Minimum Principle

113

9.4 Optimal Gaussian Approximation

114

9.4.1 General Formulation

114

9.4.2 Ferromagnetic State

114

9.4.3 Self-Energy Equation

115

References

117

10 Single-Site Gaussian Approximation

118

10.1 Coherent Potential Equation

118

10.2 Single-Site Gaussian Fluctuating Field

120

10.3 Mean Single-Site Green Function

122

10.4 Basic Magnetic Characteristics

123

10.5 Application to Ferromagnetic Metals

125

10.5.1 Iron

125

10.5.2 Cobalt

127

10.5.3 Nickel

129

10.5.4 Comparison with Other Studies

129

References

130

11 High-Temperature Theory

131

11.1 Problem of Temperature Dependence

131

11.1.1 Discontinuous Jump of Magnetization

131

11.1.2 Instability Through Multiple Solutions

132

11.1.3 Temperature Hysteresis

133

11.2 Beyond the Gaussian Approximation

137

11.2.1 Renormalized Gaussian Approximation

137

11.2.2 Local and Uniform Fluctuations

139

11.2.3 Application to Fe and Fe–Ni Invar

140

Iron

140

Fe-Ni Invar

140

References

142

12 Low-Temperature Theory

144

12.1 Low-Temperature Region

144

12.1.1 Transverse Dynamic Susceptibility

144

12.1.2 Spin Waves and T3/2 Law

147

12.2 Beyond the Spin Waves

150

12.2.1 Low-Temperature DSFT

150

12.2.2 Application to Fe and Fe-Ni Invar

151

References

153

13 Temperature Dependence of Magnetic Characteristics

155

13.1 Temporal Correlation Function

155

13.2 Qualitative Analysis of Spin Correlations

157

13.3 Spin Correlations in the One-Electron Approximation

158

13.3.1 Unenhanced Susceptibilities

158

13.3.2 Computational Formulae

160

13.3.3 Band and Model Calculations

162

13.3.4 Interim Conclusions

164

13.4 Magnetic Properties in the DSFT

165

13.4.1 Local Magnetic Characteristics

165

13.4.2 Nuclear Spin Relaxation Rates

170

References

174

14 Neutron Scattering in Metals

176

14.1 Scattering Cross-Section

176

14.2 Scattering Potential Correlator

178

14.3 Neutron Scattering and Phonons

180

14.3.1 Lattice Vibrations

180

14.3.2 Debye-Waller Factor

182

References

184

15 Short-Range Order Above TC

185

15.1 Magnetic Neutron Scattering

185

15.1.1 Magnetic Interaction Potential

185

15.1.2 Nonpolarized Magnetic Scattering

186

15.1.3 Polarized Magnetic Scattering

187

15.2 Spin-Density Correlations

189

15.2.1 Spatial Spin Correlator

190

15.2.2 Spin Correlator in the DSFT

191

15.2.3 High-Temperature Approximation

192

15.3 Application to Iron

192

15.3.1 Comparison of DSFT and Experiment

192

15.3.2 Short-Range Order Analysis

195

References

197

16 Conclusion

199

Appendices

201

A Basic Mathematical Results

202

B Concepts Related to Functional Integral

227

C Fourier Transformations

237

D Dynamic Susceptibility in the RPA

248

E Proofs of Four Results in the DSFT

252

F Basic Approximations in Scattering Theory

259

G Lattice Vibrations in the Harmonic Approximation

264

H Numerical Integral Transformations

270

I DSFT Solution Methods and Software

277

Index

282