Space Flight Dynamics

Space Flight Dynamics

von: Craig A. Kluever

Wiley, 2018

ISBN: 9781119157847 , 584 Seiten

Format: ePUB

Kopierschutz: DRM

Mac OSX,Windows PC für alle DRM-fähigen eReader Apple iPad, Android Tablet PC's Apple iPod touch, iPhone und Android Smartphones

Preis: 92,99 EUR

eBook anfordern eBook anfordern

Mehr zum Inhalt

Space Flight Dynamics


 

1
Historical Overview


1.1 Introduction


Before we begin our technical discussion of space flight dynamics, this first chapter will provide a condensed historical overview of the principle contributors and events associated with the development of what we now commonly refer to as space flight. We may define space flight as sending a human‐made satellite or spacecraft to an Earth orbit or to another celestial body such as the moon, an asteroid, or a planet. Of course, our present ability to launch and operate satellites in orbit depends on knowledge of the physical laws that govern orbital motion. This brief chapter presents the major developments in astronomy, celestial mechanics, and space flight in chronological order so that we can gain some historical perspective.

1.2 Early Modern Period


The fields of astronomy and celestial mechanics (the study of the motion of planets and their moons) have attracted the attention of the great scientific and mathematical minds. We may define the early modern period by the years spanning roughly 1500–1800. This time frame begins with the late Middle Ages and includes the Renaissance and Age of Discovery. Figure 1.1 shows a timeline of the important figures in the development of celestial mechanics during the early modern period. The astute reader will, of course, recognize these illuminous figures for their contributions to mathematics (Newton, Euler, Lagrange, Laplace, Gauss), physics (Newton, Galileo), dynamics (Kepler, Newton, Euler, Lagrange), and statistics (Gauss). We will briefly describe each figure’s contribution to astronomy and celestial mechanics.

Figure 1.1 Timeline of significant figures in the Early Modern Period.

The first major figure is Nicolaus Copernicus (1473–1543), a Polish astronomer and mathematician who developed a solar‐system model with the sun as the central body. Galileo Galilei (1546–1642) was an Italian astronomer and mathematician who defended Copernicus’ sun‐centered (or “heliocentric”) solar system. Because of his heliocentric view, Galileo was put on trial by the Roman Inquisition for heresy and spent the remainder of his life under house arrest.

Johann Kepler (1571–1630) developed the fundamental laws for planetary motion based on astronomical observations of the planet Mars compiled by the Danish nobleman Tycho Brahe (1546–1601). Kepler’s three laws are:

  1. The orbit of a planet is an ellipse, with the sun located at a focus.
  2. The radial line from the sun to the planet sweeps out equal areas during equal time intervals.
  3. The square of a planet’s orbital period for one revolution is proportional to the cube of the planet’s “mean distance” from the sun.

The third law notes the planet’s “mean distance” from the sun. In Chapter 2 we will define this “mean distance” as one‐half of the length of the major axis of an ellipse. Kepler published his first two laws of planetary motion in 1609 and his third law in 1619. Kepler developed an expression for the time‐of‐flight between two points in an orbit; this expression is now known as Kepler’s equation.

Isaac Newton (1642–1727) was an English astronomer, mathematician, and physicist who developed calculus and formulated the laws of motion and universal gravitation. Newton’s three laws of motion are:

  1. A body remains at rest or moves with a constant velocity unless acted upon by a force.
  2. The vector sum of the forces acting on a body is equal to the mass of the body multiplied by its absolute acceleration vector (i.e., ).
  3. When a body exerts a force on a second body, the second body exerts an equal‐and‐opposite force on the first body.

The first and second laws hold relative to a fixed or inertial reference frame. Newton published the three laws of motion in Principia in 1687. Newton’s universal law of gravitation states that any two bodies attract one another with a force that is proportional to the product of their masses and inversely proportional to the square of their separation distance. Newton’s laws of motion and gravitation explain the planetary motion that Kepler described by geometrical means.

Leonhard Euler (1707–1783), a Swiss mathematician, made many mathematical and scientific contributions to the fields of calculus, mathematical analysis, analytical mechanics, fluid dynamics, and optics. Euler also developed equations that govern the motion of a rotating body; these equations serve as the foundation for analyzing the rotational motion of satellites in orbit. Johann Heinrich Lambert (1728–1777), also a Swiss mathematician, formulated and solved the problem of determining the orbit that passes through two known position vectors with a prescribed transit time. Known today as Lambert’s problem, its solution provides a method for the orbit‐determination process as well as planning orbital maneuvers. Joseph‐Louis Lagrange (1736–1813) was an Italian‐born mathematician who made significant contributions in analytical mechanics and celestial mechanics, including the determination of equilibrium orbits for a problem with three bodies and the formulation of Lagrange’s planetary equations for orbital motion. Pierre‐Simon Laplace (1749–1827) was a French mathematician who, among his many mathematical contributions, formulated the first orbit‐determination method based solely on angular measurements. Carl Friedrich Gauss (1777–1855), a German mathematician of great influence, made significant contributions to the field of orbit determination. In mid‐1801 he predicted the orbit of the dwarf planet Ceres using a limited amount of observational data taken before Ceres became obscured by the sun. In late 1801, astronomers rediscovered Ceres just as predicted by Gauss.

1.3 Early Twentieth Century


Let us next briefly describe the important figures in the early twentieth century. It is during this period when mathematical theories are augmented by experimentation, most notably in the field of rocket propulsion. It is interesting to note that the important figures of this period were inspired by the nineteenth century science fiction literature of H.G. Wells and Jules Verne and consequently were tantalized by the prospect of interplanetary space travel.

Konstantin Tsiolkovsky (1857–1935) was a Russian mathematician and village school teacher who worked in relative obscurity. He theorized the use of oxygen and hydrogen as the optimal combination for a liquid‐propellant rocket in 1903 (the same year as the Wright brothers’ first powered airplane flight). Tsiolkovsky also developed theories regarding rocket propulsion and a vehicle’s velocity change – the so‐called “rocket equation.”

Robert H. Goddard (1882–1945), a US physicist, greatly advanced rocket technology by combining theory and experimentation. On March 16, 1926, Goddard successfully launched the first liquid‐propellant rocket. In 1930, Goddard moved his laboratory to New Mexico and continued to develop larger and more powerful rocket engines.

Hermann J. Oberth (1894–1989) was born in Transylvania and later became a German citizen. A physicist by training, he independently developed theories regarding human space flight through rocket propulsion. Oberth was a key figure in the German Society for Space Travel, which was formed in 1927, and whose membership included the young student Wernher von Braun. Von Braun (1912–1977) led the Nazi rocket program at Peenemünde during World War II. Von Braun’s team developed the V‐2 rocket, the first long‐range rocket and the first vehicle to achieve space flight above the sensible atmosphere.

At the end of World War II, von Braun and members of his team immigrated to the US and began a rocket program at the US Army’s Redstone Arsenal at Huntsville, Alabama. It was during this time that the US and the Soviet Union were rapidly developing long‐range intercontinental ballistic missiles (ICBMs) for delivering nuclear weapons.

1.4 Space Age


On October 4, 1957, the Soviet Union successfully launched the first artificial satellite (Sputnik 1) into an Earth orbit and thus ushered in the space age. Sputnik 1 was a polished 84 kg metal sphere and it completed an orbital revolution every 96 min. The US successfully launched its first satellite (Explorer 1) almost 4 months after Sputnik on January 31, 1958. Unlike Sputnik 1, Explorer 1 was a long, tube‐shaped satellite, and because of its shape, it unexpectedly entered into an end‐over‐end tumbling spin after achieving orbit.

Our abridged historical overview of the first half of the twentieth century illustrates the very rapid progress achieved in rocket propulsion and space flight. For example, in less than 20 years after Goddard’s 184 ft flight of the first liquid‐propellant rocket, Nazi Germany was bombarding London with long‐range V‐2 missiles. Twelve years after the end of World War II, the USSR successfully launched a satellite into orbit. Another point of interest is that in this short period, rocket propulsion and space flight transitioned from the realm of the singular individual figure to large team structures funded by governments. For example, the US established the National Aeronautics and Space Administration...