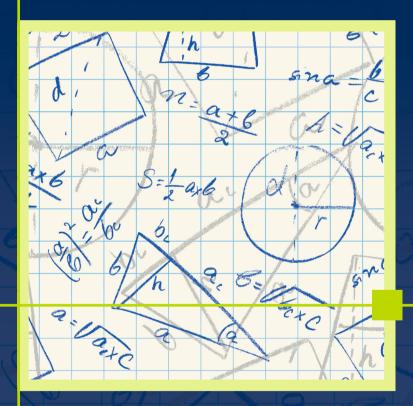
Jürgen Koch Martin Stämpfle

Mathematik für das Ingenieurstudium



4., aktualisierte Auflage

HANSER

Koch · Stämpfle Mathematik für das Ingenieurstudium

Jürgen Koch Martin Stämpfle

Mathematik für das Ingenieurstudium

4., aktualisierte Auflage

Mit 637 Abbildungen, 507 durchgerechneten Beispielen und 384 Aufgaben mit ausführlichen Lösungen im Internet unter www.mathematik-fuer-ingenieure.de

Prof. Dr. rer. nat. Jürgen Koch

Hochschule Esslingen, Fakultät Grundlagen www.hs-esslingen.de/mitarbeiter/Juergen.Koch, juergen.koch@hs-esslingen.de

Prof. Dr. rer. nat. Martin Stämpfle

Hochschule Esslingen, Fakultät Grundlagen www.hs-esslingen.de/mitarbeiter/Martin.Staempfle, martin.staempfle@hs-esslingen.de

Bibliografische Information der Deutschen Nationalbibliothek Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

ISBN 978-3-446-45166-7 E-Book-ISBN 978-3-446-45581-8

Dieses Werk ist urheberrechtlich geschützt.

Alle Rechte, auch die der Übersetzung, des Nachdruckes und der Vervielfältigung des Buches oder Teilen daraus, vorbehalten. Kein Teil des Werkes darf ohne schriftliche Genehmigung des Verlages in irgendeiner Form (Fotokopie, Mikrofilm oder ein anderes Verfahren), auch nicht für Zwecke der Unterrichtsgestaltung – mit Ausnahme der in den §§ 53, 54 URG genannten Sonderfälle –, reproduziert oder unter Verwendung elektronischer Systeme verarbeitet, vervielfältigt oder verbreitet werden.

© 2018 Carl Hanser Verlag München

www.hanser-fachbuch.de Lektorat: Mirja Werner Herstellung: Katrin Wulst

Satz: Jürgen Koch, Martin Stämpfle, Esslingen

Coverrealisierung: Stephan Rönigk

Druck und Bindung: Beltz Bad Langensalza GmbH, Bad Langensalza

Printed in Germany

Vorwort

Drei wesentliche Gründe haben uns bewogen, ein Mathematikbuch zu schreiben. Zum einen haben wir unser persönliches didaktisches Konzept umgesetzt. Zum anderen ist dieses Buch so gestaltet, dass es dem Wandel, der durch den Einsatz von Computern entstanden ist, gerecht wird. Schließlich wird durch viele Anwendungsbeispiele die Bedeutung der Mathematik in der Technik sichtbar.

In diesem Mathematikbuch haben wir viel Wert auf eine verständliche Sprache gelegt. Begriffe, Regeln und Sätze sind so formuliert, dass sie möglichst leicht zu lesen, schnell aufzufassen und einfach zu merken sind. Bilder sagen mehr als tausend Worte. Gemäß diesem Grundsatz werden Sätze, Regeln und Beispiele mit farbigen Skizzen illustriert. Diese Abbildungen helfen, den Sachverhalt unmittelbar visuell aufzunehmen. Alle Beispiele enthalten einen ausführlichen Rechenweg. Durch die Angabe von vielen Zwischenschritten sind sie auf das Niveau von Studienanfängern zugeschnitten. Dieses Buch ist nicht nach dem strengen Prinzip Definition-Satz-Beweis aufgebaut. In diesem Sinne ist es kein Mathematikbuch für Mathematiker. Trotzdem sind an vielen Stellen Herleitungen oder Beweisskizzen enthalten. Sie fördern das Verständnis über die Zusammenhänge des mathematischen Gedankengebäudes. Querbezüge zur Geschichte der Mathematik verdeutlichen, wie sich die Mathematik über Jahrhunderte aus Ideen genialer Personen entwickelt hat. Kurzporträts einiger bedeutender Mathematiker befinden sich im Anhang.

Durch den Einsatz von Computern hat sich die Tätigkeit von Ingenieuren stark gewandelt. Berechnungen und Konstruktionen werden überwiegend mit Softwarewerkzeugen durchgeführt. Dadurch steht die Vermittlung von Rechenschemata und Rechentricks bei der Mathematikausbildung in einem Ingenieurstudium heute nicht mehr im Vordergrund. Computer machen Mathematik aber nicht überflüssig, im Gegenteil: Das Kapital der Ingenieurabsolventen liegt im Verständnis der Mathematik. Das Wissen über die Modellierung und die Kenntnis unterschiedlicher Berechnungsverfahren sowie die Fähigkeit zu einer souveränen Interpretation der Ergebnisse zeichnen einen guten Ingenieur aus. Dieses Buch wird diesem geänderten Anspruch gerecht. Die meisten Kapitel enthalten einen Abschnitt über numerische Verfahren und einen Abschnitt über ausgewählte Anwendungen. Bei diesen Anwendungen sind die technischen Skizzen und Bezeichnungen teilweise vereinfacht dargestellt und deshalb nicht immer normgerecht.

Zum Überprüfen des Lernfortschrittes stehen am Ende der Kapitel Aufgaben, unterteilt in die Kategorien Verständnis, Rechentechnik und Anwendungen, zur Verfügung. Durch selbstständiges Üben und mit einer gesunden Portion Hartnäckigkeit beim Bearbeiten der Aufgaben wird sich der gewünschte Studienerfolg einstellen. Lösungen zu den Aufgaben sind über die Internetseiten der Autoren abrufbar: www.mathematik-fuer-ingenieure.de. Das Dozentenportal des Carl Hanser Verlags stellt für Mathematikdozenten begleitend zum Buch einen Foliensatz bereit.

6 Vorwort

Unser Dank richtet sich in erster Linie an unsere Studierenden. Ihre Fragen und Bemerkungen über viele Semester hinweg haben uns angeregt, immer wieder über Verbesserungen der Darstellung des Stoffes zu reflektieren. Ebenfalls bedanken möchten wir uns bei unseren Kolleginnen und Kollegen der Fakultät Grundlagen an der Hochschule Esslingen. Zahlreiche Hinweise sind an vielen Stellen eingeflossen. Ein herzlicher Dank geht an den Carl Hanser Verlag, speziell an Frau Christine Fritzsch, Frau Renate Roßbach und Frau Katrin Wulst, für die angenehme Zusammenarbeit bei der Entstehung dieses Buches. Schließlich gilt ein besonderer Dank unseren Familien, die uns Freiräume geschaffen und so die Entstehung des Manuskripts ermöglicht haben.

Esslingen, im Juli 2010

Jürgen Koch Martin Stämpfle

Die positive Resonanz über unser Buch hat uns sehr gefreut und uns dazu motiviert, in die 2. Auflage eine Reihe von Ergänzungen und Verbesserungen aufzunehmen. Bedanken möchten wir uns bei den Studierenden und Kollegen über die Rückmeldungen zu Tippfehlern und kleinen Unstimmigkeiten. In akribischer Kleinarbeit sind wir allen Hinweisen nachgegangen und haben entsprechende Korrekturen vorgenommen. Auch die Lösungen zu den Aufgaben, die nach wie vor im Internet abrufbar sind, haben wir überarbeitet.

Wir haben in der 3. Auflage das Thema Funktionen in drei Kapitel aufgeteilt. Der Einstieg in die Funktionen ist nun etwas allgemeiner gehalten und beinhaltet auch Relationen. Ein eigenes klar strukturiertes Kapitel über die elementaren Funktionen verbessert den Überblick über diese Funktionen. Die zentralen Themen Folgen, Grenzwerte und Stetigkeit sind nun in einem separaten Kapitel gebündelt. Mit Ergänzungen bei der z-Transformation und den beiden komplett neuen Kapiteln über Differenzengleichungen und elementare Zahlentheorie haben wir weitere Aspekte der diskreten Mathematik hinzugefügt. Einige Aufgaben und Lösungen sind neu hinzugekommen oder wurden überarbeitet.

In der 4. Auflage haben wir Abschnitte über orthogonale Vektoren und Matrizen und die Hauptachsentransformation aufgenommen. Das Kapitel über Zahlentheorie wurde um zwei Anwendungen erweitert. Bei den Kapiteln über Grundlagen, Matrizen und gewöhnliche Differenzialgleichungen wurden etliche Aufgaben ergänzt. Auch für diese Auflage haben wir noch einige kleinere Unstimmigkeiten geglättet.

Esslingen, im Oktober 2017

Jürgen Koch Martin Stämpfle

I	Grui	ndiagen
	1.1	Logik und Mengen
		1.1.1 Aussagenlogik
		1.1.2 Mengen
	1.2	Zahlen
		1.2.1 Natürliche Zahlen
		1.2.2 Ganze Zahlen
		1.2.3 Rationale Zahlen
		1.2.4 Reelle Zahlen
		1.2.5 Ordnung
		1.2.6 Intervalle
		1.2.7 Betrag und Signum
		1.2.8 Summe und Produkt
	1.3	Potenz und Wurzel
		1.3.1 Potenzen
		1.3.2 Potenzgesetze
		1.3.3 Wurzeln
		1.3.4 Binomischer Satz
	1.4	Trigonometrie
		1.4.1 Trigonometrie im rechtwinkligen Dreieck 4
		1.4.2 Winkel im Grad- und Bogenmaß 4
		1.4.3 Sinus- und Kosinussatz
	1.5	Gleichungen und Ungleichungen
		1.5.1 Lineare Gleichungen
		1.5.2 Potenzgleichungen
		1.5.3 Quadratische Gleichungen
		1.5.4 Wurzelgleichungen
		1.5.5 Ungleichungen
	1.6	Beweise
		1.6.1 Direkter Beweis
		1.6.2 Indirekter Beweis
		1.6.3 Konstruktiver Beweis
		1.6.4 Vollständige Induktion
	1.7	Aufgaben
2	Line	are Gleichungssysteme 6
-	2.1	6)

	2.2	Gauß-	Algorithmus	63
		2.2.1	Äquivalenzumformungen	
		2.2.2	Vorwärtselimination	
		2.2.3	Rückwärtseinsetzen	66
		2.2.4	Gaußsches Eliminationsverfahren	67
		2.2.5	Rechenschema	
	2.3	Spezie	lle Typen linearer Gleichungssysteme	
		2.3.1	Lineare Gleichungssysteme ohne Lösung	
		2.3.2	Lineare Gleichungssysteme mit unendlich vielen Lösungen	
		2.3.3	Systeme mit redundanten Gleichungen	
		2.3.4	Unterbestimmte lineare Gleichungssysteme	
		2.3.5	Überbestimmte lineare Gleichungssysteme	
		2.3.6	Homogene lineare Gleichungssysteme	
		2.3.7	Lineare Gleichungssysteme mit Parametern	
	2.4		rische Verfahren	
		2.4.1	Jacobi-Iteration	
		2.4.2	Gauß-Seidel-Iteration	
	2.5		ndungen	
	2.5	2.5.1	Produktion	
		2.5.2	Netzwerkanalyse in der Elektrotechnik	
	2.6	-	ben	
	2.0	/ taigai		. 00
3	Vek	toren		85
	3.1	Der Be	egriff eines Vektors	85
	3.2	Vektor	rechnung ohne Koordinaten	87
		3.2.1	Addition und Subtraktion	87
		3.2.2	Skalare Multiplikation	89
		3.2.3	Skalarprodukt	
		3.2.4	Vektorprodukt	
		3.2.5	Spatprodukt	96
		3.2.6	Lineare Unabhängigkeit	
	3.3	Vektor	ren in Koordinatendarstellung	
		3.3.1	Koordinatendarstellung	
		3.3.2	Addition und Subtraktion	
		3.3.3	Skalare Multiplikation	105
		3.3.4	Skalarprodukt	
		3.3.5	Vektorprodukt	
		3.3.6	·	
		3.3.7	Lineare Unabhängigkeit	
	3.4		e, Geraden und Ebenen	
		3.4.1	Kartesisches Koordinatensystem	
			· · · · · · · · · · · · · · · · · · ·	
		3.4.2	Parameterdarstellling von Geraden und Ebenen	. 114
		3.4.2 3.4.3	Parameterdarstellung von Geraden und Ebenen	
		3.4.3	Parameterfreie Darstellung von Geraden und Ebenen	116
				116 117

		3.4.6	Winkel	2
	3.5	Anwen	dungen	4
		3.5.1	Kraft	4
		3.5.2	Arbeit	4
		3.5.3	Drehmoment	
	3.6	Aufgab	en	
4	Mat	rizen	13	1
4	4.1		griff einer Matrix	_
	4.1			
	4.2	4.2.1	n mit Matrizen	
			Addition, Subtraktion und skalare Multiplikation	
	4.0	4.2.2	Multiplikation von Matrizen	
	4.3		inanten	
		4.3.1	Determinante einer (2,2)-Matrix	
		4.3.2	Determinante einer (3,3)-Matrix	
		4.3.3	Determinante einer (n,n)-Matrix	
	4.4		Matrix	
		4.4.1	Invertierbare Matrizen	
		4.4.2	Inverse einer (2,2)-Matrix	
		4.4.3	Inverse Matrix und lineares Gleichungssystem	
		4.4.4	Orthogonale Matrizen	5
	4.5	Lineare	Abbildungen	6
		4.5.1	Matrizen als Abbildungen	6
		4.5.2	Koordinatentransformation	8
		4.5.3	Kern, Bild und Rang	9
	4.6	Eigenw	erte und Eigenvektoren	0
	4.7		ische Verfahren	
	4.8	Anwen	dungen	7
	4.9		en	
5		ktionen	17	2
3	5.1			_
	5.1		nen und Funktionen	
		5.1.1	Relationen	
	F 0	5.1.2	Funktionen	
	5.2		Funktionen	
		5.2.1	Definitionsmenge, Zielmenge und Wertemenge	
		5.2.2	Wertetabelle und Schaubild	
			Explizite und implizite Darstellung	
		5.2.4	Abschnittsweise definierte Funktionen	
		5.2.5	Funktionsschar	
		5.2.6	Verkettung von Funktionen	4
	5.3	Eigenso	chaften	7
		5.3.1	Symmetrie	8
		5.3.2	Periode	1
		5.3.3	Monotonie	2
		5.3.4	Beschränktheit	3

	5.4	Das Prinzip der Umkehrfunktion	
	5.5	Anwendungen	
		5.5.1 Messwerte	
	- <i>c</i>	5.5.2 Kennfelder	
	5.6	Aufgaben	<i>9</i> 9
6		nentare Funktionen 20	
	6.1	Potenz- und Wurzelfunktionen	
		6.1.1 Potenzfunktionen	
		6.1.2 Wurzelfunktionen	
	6.2	Polynome und gebrochenrationale Funktionen	
		6.2.1 Polynome	
		6.2.2 Gebrochenrationale Funktionen	12
	6.3	Sinus, Kosinus, Tangens und Arkusfunktionen	
		6.3.1 Definition am Einheitskreis	
		6.3.2 Eigenschaften	21
		6.3.3 Allgemeine Sinus- und Kosinusfunktion	24
		6.3.4 Arkusfunktionen	26
	6.4	Exponential- und Logarithmusfunktionen	31
		6.4.1 Exponentialfunktionen	31
		6.4.2 Die e-Funktion	32
		6.4.3 Logarithmusfunktionen	34
	6.5	Hyperbel- und Areafunktionen	37
		6.5.1 Hyperbelfunktionen	37
		6.5.2 Areafunktionen	39
	6.6	Anwendungen	40
		6.6.1 Freileitungen	
		6.6.2 Industrieroboter	
	6.7	Aufgaben	42
7	Folg	en, Grenzwerte und Stetigkeit 24	15
	7.1	Folgen	45
		7.1.1 Zahlenfolgen	
		7.1.2 Grenzwert einer Folge	
	7.2	Funktionsgrenzwerte	
	7.3	Stetigkeit	
	7.4	Asymptotisches Verhalten	
	7.5		
		7.5.1 Berechnung von Funktionswerten	
		7.5.2 Bisektionsverfahren	
	7.6	Anwendungen	
	7.7	Aufgaben	
_			
8			71
	8.1	2 6 6	71 71
		× I I I I I I I I I I I I I I I I I I I	/ I

		8.1.2	Differenzial
		8.1.3	Ableitungsfunktion
		8.1.4	Mittelwertsatz der Differenzialrechnung
		8.1.5	Höhere Ableitungen
	8.2	Ableit	ungstechnik
		8.2.1	Ableitungsregeln
		8.2.2	Ableitung der Umkehrfunktion
		8.2.3	Logarithmisches Differenzieren
		8.2.4	Implizites Differenzieren
		8.2.5	Zusammenfassung
	8.3	Regel	von Bernoulli-de l'Hospital
	8.4	Geome	etrische Bedeutung der Ableitungen
		8.4.1	Neigungswinkel und Schnittwinkel
		8.4.2	Monotonie
		8.4.3	Krümmung
		8.4.4	Lokale Extrema
		8.4.5	Wendepunkte
		8.4.6	Globale Extrema
	8.5	Numer	rische Verfahren
		8.5.1	Numerische Differenziation
		8.5.2	Newton-Verfahren
		8.5.3	Sekantenverfahren
	8.6	Anwen	dungen
		8.6.1	Fehlerrechnung
		8.6.2	Extremwertaufgaben
		8.6.3	Momentan- und Durchschnittsgeschwindigkeit
	8.7	Aufgal	pen
_			
9		gralrec	
	9.1		nproblem
		9.1.1	Integralsymbol
		9.1.2	Integral als Grenzwert von Summen
		9.1.3	Bestimmtes Integral
	9.2		menhang von Ableitung und Integral
		9.2.1	Integralfunktion
		9.2.2	Stammfunktion
		9.2.3	Bestimmtes Integral und Stammfunktion
		9.2.4	Mittelwertsatz der Integralrechnung
	9.3	_	ationstechnik
		9.3.1	Integrationsregeln
		9.3.2	Integration durch Substitution
		9.3.3	Partielle Integration
		9.3.4	Gebrochenrationale Funktionen
		9.3.5	Uneigentliche Integrale

	9.4	Länge, Flächeninhalt und Volumen	
		9.4.1 Flächeninhalte	
		9.4.2 Bogenlänge	
		9.4.3 Rotationskörper	355
	9.5	Numerische Verfahren	359
		9.5.1 Trapezregel	360
		9.5.2 Romberg-Verfahren	
	9.6	Anwendungen	
		9.6.1 Effektivwert	
		9.6.2 Schwerpunkte und statische Momente ebener Flächen	
	9.7	Aufgaben	
	5.1	Augusti	501
10	Pote	enzreihen	371
	10.1	Unendliche Reihen	372
	10.2	Potenzreihen und Konvergenz	376
	10.3	Taylor-Reihen	377
		Eigenschaften	
		Numerische Verfahren	
		Anwendungen	
		Aufgaben	
11	Kurv	ven	389
	11.1	Parameterdarstellung	389
	11.2	Kegelschnitte	392
		Tangente	
		Krümmung	
		Bogenlänge	
		Numerische Verfahren	
		Anwendungen	
		11.7.1 Mechanik	
		11.7.2 Straßenbau	
	11 8	Aufgaben	
	11.0	, talgabeli	110
12			413
	12.1	Definition und Darstellung	
		12.1.1 Definition einer Funktion mit mehreren Variablen	
		12.1.2 Schaubild einer Funktion mit mehreren Variablen	414
		12.1.3 Schnittkurven mit Ebenen und Höhenlinien	414
	12.2	Grenzwert und Stetigkeit	418
		12.2.1 Grenzwert einer Funktion mit mehreren Variablen	418
		12.2.2 Stetigkeit	419
	12.3	Differenziation	
		12.3.1 Partielle Ableitungen und partielle Differenzierbarkeit	
		12.3.2 Differenzierbarkeit und Tangentialebene	
		12.3.3 Gradient und Richtungsableitung	
		12 3 4 Differenzial	

		12.3.5 Höhere partielle Ableitungen	
	10.4	12.3.6 Extremwerte	
	12.4	Ausgleichsrechnung	
		12.4.1 Methode der kleinsten Fehlerquadrate	
		12.4.2 Ausgleichsrechnung mit Polynomen	
	10 5	12.4.3 Lineare Ausgleichsrechnung	
		Vektorwertige Funktionen	
	12.6	Numerische Verfahren	
		12.6.1 Mehrdimensionales Newton-Verfahren	
	10.7	12.6.2 Gradientenverfahren	
		Anwendungen	
	12.8	Aufgaben	49
13			51
	13.1	Definition und Darstellung	
		13.1.1 Komplexe Zahlen	
		13.1.2 Gaußsche Zahlenebene	
		13.1.3 Polarkoordinaten	
		13.1.4 Exponentialform	
	13.2	Rechenregeln	
		13.2.1 Gleichheit	
		13.2.2 Addition und Subtraktion	
		13.2.3 Multiplikation und Division	
		13.2.4 Rechnen mit der konjugiert komplexen Zahl 4	
		13.2.5 Rechnen mit dem Betrag einer komplexen Zahl 4	
	13.3	Potenzen, Wurzeln und Polynome	
		13.3.1 Potenzen	
		13.3.2 Wurzeln	63
		13.3.3 Fundamentalsatz der Algebra	
	13.4	Komplexe Funktionen	
		13.4.1 Ortskurven	69
		13.4.2 Harmonische Schwingungen	70
		13.4.3 Transformationen	74
		Anwendungen	
	13.6	Aufgaben	79
14	Gew	öhnliche Differenzialgleichungen 4	81
	14.1	Einführung	81
		14.1.1 Grundbegriffe	81
		14.1.2 Anfangswert- und Randwertproblem	84
		14.1.3 Richtungsfeld und Orthogonaltrajektorie	86
		14.1.4 Differenzialgleichung und Funktionenschar	
	14.2	Differenzialgleichungen erster Ordnung	89
		14.2.1 Separation der Variablen	
		14.2.2 Lineare Substitution	
		14.2.3 Ähnlichkeitsdifferenzialgleichungen	93

	14.3	Lineare Differenzialgleichungen	494
		14.3.1 Homogene und inhomogene lineare Differenzialgleichungen	494
		14.3.2 Lineare Differenzialgleichungen erster Ordnung	497
		14.3.3 Allgemeine Eigenschaften	501
		14.3.4 Differenzialgleichungen mit konstanten Koeffizienten	504
	14.4	Schwingungsdifferenzialgleichungen	517
		14.4.1 Allgemeine Form	
		14.4.2 Freie Schwingung	
		14.4.3 Harmonisch angeregte Schwingung	
		14.4.4 Frequenzgänge	
	14.5	Differenzialgleichungssysteme	
		14.5.1 Eliminationsverfahren	
		14.5.2 Zustandsvariablen	
		14.5.3 Lineare Systeme mit konstanten Koeffizienten	530
		14.5.4 Lineare Differenzialgleichung als System	
		14.5.5 Stabilität	
	14.6	Numerische Verfahren	
		14.6.1 Polygonzugverfahren von Euler	
		14.6.2 Euler-Verfahren für Differenzialgleichungssysteme	
	14.7	Anwendungen	
		14.7.1 Temperaturverlauf	
		14.7.2 Radioaktiver Zerfall	
		14.7.3 Freier Fall mit Luftwiderstand	
		14.7.4 Feder-Masse-Schwinger	
		14.7.5 Pendel	
		14.7.6 Wechselstromkreise	
	14.8	Aufgaben	
15	Diffe	erenzengleichungen	557
	15.1	Lineare Differenzengleichungen	557
		15.1.1 Differenzengleichungen erster Ordnung	
		15.1.2 Differenzengleichungen höherer Ordnung	561
	15.2	Systeme linearer Differenzengleichungen	565
		15.2.1 Homogene Systeme erster Ordnung	566
		15.2.2 Inhomogene Systeme erster Ordnung	568
		15.2.3 Asymptotisches Verhalten	
	15.3	Anwendungen	571
	15.4	Aufgaben	572
1.0	_		F.7.0
10		rier-Reihen	573
	10.1	Fourier-Analyse	
		16.1.1 Periodische Funktionen	
		16.1.2 Trigonometrische Polynome	
		16.1.3 Fourier-Reihe	
		16.1.4 Satz von Fourier	
		16.1.5 Gibbssches Phänomen	581

	16.2		exe Darstellung					
			Komplexe Fourier-Reihe					
		16.2.2	Berechnung komplexer Fourier-Koeffizienten					585
		16.2.3	Spektrum					587
		16.2.4	Minimaleigenschaft					590
	16.3	Eigenso	haften					592
		16.3.1	Symmetrie					592
			Integrationsintervall					
		16.3.3	$Mittelwert \ \ldots \ \ldots \ \ldots \ \ldots \ \ldots \ \ldots$					594
		16.3.4	Linearität					594
			Ähnlichkeit und Zeitumkehr					
			Zeitverschiebung					
	16.4	Aufgab	en					599
17	Vora	llaomoi	nerte Funktionen					601
11			de-Funktion					
			Distribution					
			emeinerte Ableitung					
		-	dungen					
			en					
18			nsformation					613
	18.1		transformation					
			Definition					
			Darstellung mit Real- und Imaginärteil					
			Sinus- und Kosinustransformation					
			Transformation gerader und ungerader Funktionen					
	100		Darstellung mit Amplitude und Phase					
	18.2	-	haften					
			Linearität					
			Zeitverschiebung					
			Amplitudenmodulation					
	10.0		Ähnlichkeit und Zeitumkehr					
	18.3		Fourier-Transformation					
			Definition					
			Vertauschungssatz					
	10.4		Linearität					
	18.4		nziation, Integration und Faltung					
			Differenziation im Zeitbereich					
			Differenziation im Frequenzbereich					
			Multiplikationssatz					
			Integration					
	10 5		Faltung					
	18.5		sche Funktionen					
		10.5.1	Fourier-Transformation einer Fourier-Reihe					030

		18.5.2 Koeffizienten der Fourier-Reihe	
		18.5.3 Grenzwertbetrachtung	
	18.6	Anwendungen	
		18.6.1 Lineare zeitinvariante Systeme	
		18.6.2 Tiefpassfilter	
	18.7	Aufgaben	4
19	Lapl	ace-Transformation 64	7
	19.1	Bildbereich	7
		19.1.1 Definition	7
		19.1.2 Laplace- und Fourier-Transformation	0
	19.2	Eigenschaften	1
		19.2.1 Linearität	1
		19.2.2 Ähnlichkeit	2
		19.2.3 Zeitverschiebung	3
		19.2.4 Dämpfung	
	19.3	Differenziation, Integration und Faltung	
		19.3.1 Differenziation	
		19.3.2 Integration	
		19.3.3 Faltung	
		19.3.4 Grenzwerte	
	19.4	Transformation periodischer Funktionen	
		Rücktransformation	
		Lösung gewöhnlicher Differenzialgleichungen	
		Anwendungen	
		Aufgaben	
20	7-Tr:	ansformation 67	'3
20		Transformation diskreter Signale	_
	20.1	20.1.1 Definition	
		20.1.2 z-Transformation und Laplace-Transformation 67	
	20.2	Eigenschaften	
	20.2	20.2.1 Linearität	
		20.2.2 Dämpfung	
		20.2.3 Verschiebung	
		20.2.4 Vorwärtsdifferenzen	
		20.2.5 Multiplikationssatz	
		20.2.6 Diskrete Faltung	
	20.3	Lösung von Differenzengleichungen	
		Anwendungen	
		Aufgaben	
			. 1
21		nentare Zahlentheorie 68	_
		Teilbarkeit	
		Kongruente Zahlen	
	21.3	Primzahlen 60	18

	21.4	Anwendungen	
		21.4.1 International Bank Account Number (IBAN)	
		21.4.2 Linearer Kongruenzgenerator für Pseudozufallszahlen	
	21.5	Aufgaben	. 704
Α	Anha	ang	705
	A.1	Bedeutende Mathematiker	705
	A.2	Trigonometrische Funktionen	724
	A.3	Ableitungen	725
	A.4	Ableitungsregeln	725
	A.5	Integrale	726
	A.6	Integralregeln	. 727
	A.7	Potenzreihen	727
	A.8	Fourier-Reihen	728
	A.9	Korrespondenzen der Fourier-Transformation	730
	A.10	Eigenschaften der Fourier-Transformation	732
	A.11	Korrespondenzen der Laplace-Transformation	733
	A.12	Eigenschaften der Laplace-Transformation	734
	A.13	Korrespondenzen der z-Transformationen	735
	A.14	Eigenschaften der z-Transformationen	735
		Griechisches Alphabet	
Lit	eratu	rverzeichnis	737
Sa	chwo	rtverzeichnis	739

1 Grundlagen

Die Mathematik ist aus einzelnen Bausteinen aufgebaut. Neue Erkenntnisse bauen stets auf bereits Bekanntem auf. Dadurch entsteht ein immer mächtigeres Bauwerk. In diesem Kapitel beschäftigen wir uns, bildlich gesprochen, mit den untersten Etagen der Mathematik. Dabei geht es vor allem um Themen der Schulmathematik. Nun gehört die Schulmathematik nicht immer zu den vorrangigen Interessensgebieten von Studierenden. Man könnte darüber nachdenken, dieses Kapitel zu überblättern. Das geht natürlich nur gut, wenn im Kartenhaus unserer Leser in den untersten Etagen nicht viele Lücken vorhanden sind. Ansonsten drohen die ganzen Bemühungen mit einstürzenden Neubauten zu enden. Auch wenn man den Eindruck hat, über ein tragbares Fundament in Mathematik zu verfügen, sollte man sich mit den Bezeichnungen für logische Operatoren, Mengen, Zahlen, Intervalle, Summen und Produkte in diesem Kapitel vertraut machen.

Die Darstellung der Themen in diesem ersten Kapitel ist sehr komprimiert. Für eine intensive Wiederholung der Schulmathematik sollte man jedoch noch weitere Bücher, die mehr Beispiele und Übungsaufgaben enthalten, in Betracht ziehen. Die wesentlichen Dinge, die in den folgenden Kapiteln benötigt werden, sind jedoch alle enthalten.

1.1 Logik und Mengen

Wir gehen in diesem Abschnitt kurz auf einige Aspekte der Logik und der Mengenlehre ein. Diese beiden Teilgebiete gehören zum absoluten Fundament der Mathematik. Obwohl sie in diesem Buch nicht im Mittelpunkt stehen, werden wir doch an vielen Stellen immer wieder logische und mengentheoretische Eigenschaften anwenden.

1.1.1 Aussagenlogik

"Das ist doch logisch." Dieser Satz wird oft strapaziert, jedoch nicht immer geht dieser Aussage eine wirklich streng logische Herleitung eines Sachverhalts voraus. Die Mathematik bedient sich an vielen Stellen der Logik. Die Hoffnung dabei ist, dass Dinge objektiv beschrieben werden können und Aussagen und Gesetze lange Zeit Gültigkeit haben, da sie für jeden transparent und schlüssig, eben logisch herleitbar sind. Die grundlegende Denkweise der Logik wurde auch unter philosophischen Aspekten bereits in der Antike etwa von *Aristoteles* beschrieben.

Eine spezielle Art der Logik ist die Aussagenlogik. Wie die Bezeichnung schon vermuten lässt, stehen dabei Aussagen im Mittelpunkt. Es stellt sich die Frage, wie man mit

20 1 Grundlagen

Aussagen, insbesondere natürlich mit mathematischen Aussagen umgehen kann. In der klassischen Aussagenlogik geht man davon aus, dass eine Aussage entweder wahr oder falsch ist. Aussagen, bei denen nicht entscheidbar ist, ob sie wahr oder falsch sind, berücksichtigen wir hier nicht. Betrachtet man nicht nur eine Aussage, sondern mehrere, dann ist interessant, wie diese Aussagen zueinander stehen. Oftmals folgt aus einer Aussage eine andere. Man kann Aussagen miteinander verknüpfen und dadurch zu weiteren Aussagen gelangen. Der formale Apparat dazu heißt Aussagenlogik. Etwas allgemeiner ist die nach dem englischen Mathematiker *George Boole* benannte und von *Giuseppe Peano* und *John Venn* maßgeblich entwickelte Boolesche Algebra. Sie kann auf die Logik und auf Mengen, wie wir sie in *Abschnitt 1.1.2* betrachten, spezialisiert werden. Zunächst definieren wir einige Operationen für Aussagen.

Definition 1.1 (Aussagenlogik)

Für die Aussagen A_1 und A_2 bezeichnet man

• die **Negation** oder das Gegenteil der Aussage A_1 mit $\neg A_1$,

• die **Und-Verknüpfung** der beiden Aussagen mit $A_1 \wedge A_2$,

• die **Oder-Verknüpfung** der beiden Aussagen mit $A_1 \vee A_2$,

die **Implikation** der beiden Aussagen mit $A_1 \Longrightarrow A_2$,

die **Äquivalenz** der beiden Aussagen mit $A_1 \iff A_2$.

Für äquivalente Aussagen verwendet man die Sprechweise

$$A_1 \Longleftrightarrow A_2$$
 " A_1 gilt genau dann, wenn A_2 gilt"

und für die Implikation

$$A_1 \Longrightarrow A_2$$
 "wenn A_1 gilt, dann gilt auch A_2 " oder "aus A_1 folgt A_2 ".

Etwas gewöhnungsbedürftig ist die Tatsache, dass für Relationen zwischen Aussagen Folgendes zutrifft:

$$A_1 \Longrightarrow A_2$$
 ist gleichbedeutend mit $\neg A_2 \Longrightarrow \neg A_1$.

Folgt also aus A_1 die Aussage A_2 , so ist dies äquivalent zur Tatsache, dass, wenn A_2 falsch ist, die Ausssage A_1 ebenfalls nicht wahr sein kann. Dies wird beispielsweise bei der Durchführung von Widerspruchsbeweisen, siehe $Abschnitt\ 1.6$, angewandt. Die Oder-Verknüpfung ist kein exklusives Oder. Ist Aussage A_1 oder Aussage A_2 wahr, so können durchaus auch beide Aussagen wahr sein. Möchte man ausdrücken, dass nur genau eine Aussage wahr ist, also entweder A_1 oder A_2 , so kann man dies mithilfe der exklusiven Oder-Verknüpfung erreichen:

$$(A_1 \wedge \neg A_2) \vee (A_2 \wedge \neg A_1).$$

Damit wird also ausgedrückt, dass entweder A_1 wahr und A_2 falsch ist oder der umgekehrte Fall gilt.

Beispiel 1.1 (Aussagen)

 a) Um im Lotto zu gewinnen, muss man einen Lottoschein ausfüllen. Zwischen den beiden Aussagen

 A_1 : Ich habe im Lotto gewonnen, A_2 : Ich habe einen Lottoschein ausgefüllt

besteht also die Implikation $A_1 \Longrightarrow A_2$. Einen Lottoschein auszufüllen bezeichnet man als eine notwendige Bedingung für einen Lottogewinn. Allerdings ist das leider noch keine hinreichende Bedingung für einen Lottogewinn.

b) Wir betrachten die beiden Aussagen

 A_1 : Die Figur ist ein Dreieck, A_2 : Die Figur ist ein Polygon.

Da jedes Dreieck ein Polygon ist, gilt $A_1 \Longrightarrow A_2$. Die Umkehrung muss aber nicht zutreffen. Ein Quadrat etwa ist insbesondere ein Polygon, aber eben kein Dreieck. Die beiden Aussagen sind nicht äquivalent.

c) Bei den beiden Aussagen

$$A_1: x > 5, \quad A_2: x > -2.$$

gilt $A_1 \Longrightarrow A_2$, denn wenn eine Zahl größer als 5 ist, dann ist sie auch größer als -2. Die Umkehrung trifft nicht zu. Somit sind die beiden Aussagen auch nicht äquivalent.

d) Für die Aussagen

$$A_1: x^2 = 4$$
, $A_2: x = 2$, $A_3: x = -2$

gelten die folgenden Relationen:

$$A_2 \Longrightarrow A_1, \quad A_3 \Longrightarrow A_1, \quad A_1 \Longleftrightarrow A_2 \vee A_3.$$

An diesem Beispiel wird deutlich, wie die Aussagenlogik die mathematische Lösungsfindung begleitet. Nur bei Äquivalenzumformungen ist sichergestellt, dass keine Lösung verloren geht und auch kein neuer Lösungskandidat hinzu kommt.

Die Oder-Verknüpfung und die Und-Verknüpfung sind assoziativ und kommutativ. Man kann also beliebig Klammern setzen und auch die Reihenfolge vertauschen. Treten beide Operatoren gemischt in einem Ausdruck auf, so kann man diesen mithilfe der Regeln des Mathematikers *Augustus de Morgan* umformen.

Satz 1.1 (Regeln von de Morgan)

Für die Aussagen A_1 und A_2 gilt:

$$\neg (A_1 \land A_2) = \neg A_1 \lor \neg A_2$$

$$\neg (A_1 \lor A_2) = \neg A_1 \land \neg A_2$$

Nun gibt es allerdings auch eine etwas seltsame Art von Aussagen, bei denen man auch bei näherer Betrachtung nicht so recht weiter kommt. Was ist beispielsweise davon zu halten, wenn ein Mann folgenden Satz spricht:

"Ich spreche jetzt nicht die Wahrheit."

22 1 Grundlagen

Wenn er die Wahrheit sagt, so stimmt seine Aussage. Darin ist aber enthalten, dass er nicht die Wahrheit spricht. Dies ist ein Widerspruch. Wenn er lügt, dann ist seine Aussage nicht wahr. Seine Behauptung, dass er nicht die Wahrheit spricht, ist falsch. Er sagt also die Wahrheit. Dies führt ebenfalls zu einem Widerspruch. Es ist folglich nicht entscheidbar, ob diese Aussage wahr ist oder nicht. Wie kommt dieses Paradoxon zustande? Es ist der Selbstbezug, der diese sogenannte Antinomie ungreifbar macht. Bertrand Russell publizierte 1903 dieses Paradoxon erstmals.

Als Ausblick sei hier erwähnt, dass eine Erweiterung der Aussagenlogik in der sogenannten Prädikatenlogik besteht. Dieser Formalismus enthält als weitere Strukturelemente sogenannte Prädikate und Quantoren, mit deren Hilfe Existenz und Allgemeingültigkeit von Ausdrücken näher spezifiziert werden können. Die Prädikatenlogik hat viele Anwendungsfelder. Dazu zählen Programmiersprachen und Compilerbau in der Informatik. Pioniere der modernen Logik sind *John von Neumann*, *Paul Bernays* und *Kurt Gödel*.

1.1.2 Mengen

Viele Begriffe in der Mathematik, wie beispielsweise die reellen Zahlen oder der Wertevorrat einer Funktion, werden über Mengen definiert. Eine Menge fasst verschiedene Elemente zusammen. In einer Menge können endlich viele oder unendlich viele Elemente enthalten sein. Bei einer Menge interessiert man sich nicht für die Reihenfolge der Elemente. In diesem Sinn gibt es kein erstes oder letztes Element einer Menge. Man kann lediglich entscheiden, ob ein gewisses Element in einer Menge enthalten ist oder nicht. Ein und dasselbe Element kann auch nicht mehrfach in einer Menge enthalten sein. Mengen kann man durch Aufzählen der Elemente oder durch Angabe bestimmter Eigenschaften der Elemente festlegen.

Definition 1.2 (Mengenschreibweise)

In der **aufzählenden Form** einer Menge M werden alle Elemente $a,\,b,\,c,\,\ldots$ aufgezählt, die zu M gehören:

$$M = \{a, b, c, \ldots\}.$$

In der **beschreibenden Form** einer Menge M besteht M aus allen Elementen x, die eine bestimmte Eigenschaft erfüllen:

 $M = \{x \mid x \text{ hat bestimmte Eigenschaft}\}.$

Beispiel 1.2 (Mengenschreibweise)

Die Menge, die aus allen Zahlen besteht, deren Quadrat kleiner oder gleich 4 ist und die größer oder gleich -1 sind, definiert man durch

$$M = \left\{ x \mid x^2 \leq 4 \text{ und } x \geq -1 \right\}.$$

Die Menge M besteht aus den Zahlen zwischen -1 und 2.

Definition 1.3 (Leere Menge)

Die **leere Menge** bezeichnet man mit $\emptyset = \{\}.$

Die leere Menge enthält kein Element. Für sie verwendet man die Bezeichnung Ø. Mit den Symbolen ∈ und ∉ beschreibt man das Enthaltensein von Elementen in einer Menge.

Definition 1.4 (Element einer Menge)

Die Mengenzugehörigkeit beschreibt man für

- ein **Element** einer Menge mit $a \in \{a, b, c\}$,
- ▶ kein Element einer Menge mit $d \notin \{a, b, c\}$.

Zwei Mengen sind gleich, wenn sie genau dieselben Elemente enthalten. Wenn die Menge M_2 alle Elemente der Menge M_1 auch enthält, dann nennt man M_1 eine Teilmenge von M_2 . In diesem Sinne besteht auch zwischen zwei gleichen Mengen die Teilmengenrelation. An manchen Stellen unterscheidet man zwischen echten und unechten Teilmengen. Bei zwei gleichen Mengen spricht man dann von unechten Teilmengen. Echte Teilmengen müssen sich um mindestens ein Element unterscheiden.

Definition 1.5 (Teilmenge)

Die Menge M_1 ist eine **Teilmenge** der Menge M_2 , falls jedes Element x der Menge M_1 auch in der Menge M_2 enthalten ist:

$$M_1 \subset M_2 : \quad x \in M_1 \implies x \in M_2.$$

Die wichtigsten Operationen für Mengen sind Vereinigung, Schnitt und Differenz. Die Vereinigungsmenge zweier Mengen enthält alle Elemente aus den beiden Mengen. Die Schnittmenge zweier Mengen besteht aus den Elementen, die sowohl zu der einen als auch zu der anderen Menge gehören. Bei der Differenzenmenge von zwei Mengen werden alle Elemente der zweiten Menge aus der ersten Menge entfernt. Mithilfe der Aussagenlogik kann man die Mengenoperationen formal definieren.

Definition 1.6 (Mengenoperationen)

Für die Mengen M_1 und M_2 definiert man

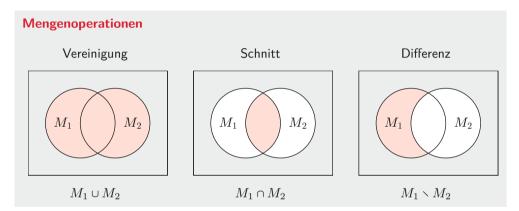
- die Vereinigungsmenge durch $M_1 \cup M_2 = \{ x \mid x \in M_1 \lor x \in M_2 \},$
- die **Schnittmenge** durch $M_1 \cap M_2 = \{ x \mid x \in M_1 \land x \in M_2 \},$
- die **Differenzenmenge** durch $M_1 \setminus M_2 = \{ x \mid x \in M_1 \land x \notin M_2 \}.$

24 1 Grundlagen

Während bei den ersten beiden Operationen die Mengen vertauschbar sind, ohne dass sich dabei das Ergebnis ändert, ist dies bei der Differenzbildung nicht möglich. Im Allgemeinen ist also $M_1 \smallsetminus M_2$ nicht dasselbe wie $M_2 \smallsetminus M_1$. Die Differenzbildung ist, wie man sagt, nicht kommutativ. Das exklusive Mengen-Oder erhält man mittels der Mengendifferenz folgendermaßen:

$$(M_1 \setminus M_2) \cup (M_2 \setminus M_1).$$

Deutlich sichtbar ist die Analogie zwischen der logischen Oder-Verknüpfung und der Vereinigungsmenge. Gleiches gilt für die logische Und-Verknüpfung und die Schnittmenge. Auch beim exklusiven Oder ist die Analogie zur Aussagenlogik erkennbar. Sicherlich einprägsamer und leichter zu merken sind diese Definitionen über Mengendiagramme, die man auch als Venn-Diagramme bezeichnet. Sie sind nach dem englischen Mathematiker John Venn benannt.



Beispiel 1.3 (Mengenoperationen)

- a) $\{4,7,11\} \cup \{7,17,27\} = \{4,7,11,17,27\}$
- b) $\{4,7,11\} \cap \{7,17,27\} = \{7\}$
- c) $\{4,7,11\} \setminus \{7,17,27\} = \{4,11\}$

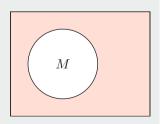
Nun gibt es noch die sogenannte Komplementbildung einer Menge M. Diese ist allerdings nur definiert, falls es eine Grundmenge gibt, aus der M gebildet ist.

Definition 1.7 (Mengenkomplement)

Bezogen auf eine Grundmenge ist das **Komplement** einer Menge definiert durch

$$M^C = \{\, x \mid x \notin M\}.$$

 $\label{eq:condition} \mbox{Kein Element von } M \mbox{ ist in der Menge } M^C \mbox{ ent-halten und umgekehrt.}$



1.2 Zahlen 25

Viele Beiträge zu unterschiedlichen Aspekten der Mengenlehre stammen von Bernhard Placius Johann Nepomuk Bolzano, Richard Dedekind, Georg Ferdinand Ludwig Philipp Cantor und Ernst Friedrich Ferdinand Zermelo.

1.2 Zahlen

Der Mathematiker *Richard Dedekind* veröffentlichte 1888 eine Publikation mit dem Titel "Was sind und was sollen Zahlen?". Für sich betrachtet sind Zahlen rein abstrakte mathematische Objekte. Aus unserem Alltag sind Zahlen jedoch nicht mehr wegzudenken. Sie werden zum Zählen, Ordnen, Messen und zur Angabe von Größenverhältnissen verwendet. Beispielsweise hat die Zahl 11 zunächst keinen Bezug zu unserer täglichen Realität. Wenn wir jedoch wissen, dass eine Fußballmannschaft aus 11 Spielern besteht, dann ist die Größe genau festgelegt. Wenn eine Mannschaft auf dem 11-ten Tabellenplatz steht, dann verwenden wir die Zahlen zum Festlegen einer Reihenfolge.

In dieser Einführung stellen wir gewissermaßen die Entstehungsgeschichte der Zahlen vor. Sie erstreckt sich von den natürlichen und ganzen Zahlen über die rationalen Zahlen bis zu den reellen Zahlen. Die letzte Episode, die sich mit den komplexen Zahlen beschäftigt, ist in *Kapitel 13* enthalten.

1.2.1 Natürliche Zahlen

Die Zahlen

$$0, 1, 2, 3, 4, 5, 6, 7, \dots$$

sind uns aus dem Alltag vertraut. Die Mathematiker bezeichnen diese Zahlen deshalb als natürliche Zahlen

Definition 1.8 (Menge der natürlichen Zahlen)

Die Menge der natürlichen Zahlen wird beschrieben durch

$$\mathbb{N} = \{0, 1, 2, 3, \ldots\}.$$

Viel Diskussion erzeugt die Frage, ob die Null auch eine natürliche Zahl ist. Letztendlich ist es jedoch ohne Bedeutung, ob wir die Null als natürliche Zahl betrachten oder nicht. Über was wir wirklich bei dieser Schreibweise nachdenken sollten, sind die drei Punkte am Ende der Auflistung. Durch die Notation ... wird angedeutet, dass es immer weiter geht. Im Sinne der Mathematik gibt es also keine größte natürliche Zahl. Meistens argumentiert man dabei wie folgt: Angenommen es gäbe eine größte natürliche Zahl, dann kann man doch sicherlich eine Eins zu dieser Zahl addieren und erhält dadurch eine noch größere Zahl. Also ist die Annahme, dass es eine größte natürliche Zahl gibt, nicht haltbar.

26 1 Grundlagen

Definition 1.9 (Unendlich)

In der Mathematik versteht man unter dem Begriff **Unendlichkeit** das Gegenteil von Endlichkeit. Eine Menge hat also genau dann unendlich viele Elemente, wenn die Anzahl der Elemente nicht endlich ist. Zur Bezeichnung der Unendlichkeit verwendet man das Symbol ∞ .

Beim Umgang mit dem Symbol ∞ ist Vorsicht geboten. Man darf mit diesem Symbol nicht einfach wie mit Zahlen rechnen. Wenn man Ausdrücke der Art $\infty - \infty$ verwendet, muss man genau erläutern, was darunter zu verstehen ist.

Symbole ∞ und -∞

Die Bezeichnungen ∞ und $-\infty$ sind Symbole und keine Zahlen. Mit den Symbolen ∞ und $-\infty$ darf man nicht einfach rechnen wie mit Zahlen.

Ob sich die mathematische Unendlichkeit tatsächlich auf unsere reale Welt übertragen lässt, ist dem Mathematiker letztendlich egal. Nach Schätzungen von Physikern enthält unser Universum nicht mehr als 10^{78} Atome. Die Größe einer solchen Zahl mit 78 Stellen ist schwer zu erfassen, sie spielt für die mathematische Theorie keine Rolle. In der Mathematik ist das Prinzip der Unendlichkeit durch Axiome fest verankert. Albert Einstein soll einmal gesagt haben: "Zwei Dinge sind unendlich: Das Universum und die menschliche Dummheit. Aber beim Universum bin ich mir nicht ganz sicher."

1.2.2 Ganze Zahlen

Die Addition und die Multiplikation zweier natürlicher Zahlen ergibt wieder eine natürliche Zahl. Anders sieht es bei der Subtraktion aus. Wenn man von einer natürlichen Zahl eine größere natürliche Zahl abzieht, so ist das Ergebnis negativ. Das Ergebnis ist in diesem Fall also keine natürliche Zahl. Um diesen Makel zu beseitigen, erweitern wir die natürlichen Zahlen um die negativen Zahlen.

Definition 1.10 (Menge der ganzen Zahlen)

Die Menge der ganzen Zahlen wird beschrieben durch

$$\mathbb{Z} = \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}.$$

Durch die ganzen Zahlen ist die Problematik bei der Subtraktion behoben. Die Addition, die Multiplikation und die Subtraktion zweier ganzer Zahlen ergibt wieder eine ganze Zahl. Mathematiker sprechen von der Abgeschlossenheit der ganzen Zahlen bezüglich Addition, Multiplikation und Subtraktion.

Auf den ersten Blick hat es den Anschein, dass es doppelt so viele ganze Zahlen wie natürliche Zahlen gibt. Bei dieser Betrachtung ist jedoch Vorsicht geboten. Sie geht von

1.2 Zahlen 27

einer Rechnung der Art " $\infty + \infty = 2\infty$ " aus. Wie bereits erwähnt, darf man mit dem Symbol ∞ nicht einfach so rechnen, als ob es eine Zahl wäre. Aus Sicht der Mathematik ist die Anzahl der natürlichen und der ganzen Zahlen gleich, nämlich unendlich.

1.2.3 Rationale Zahlen

Über eine Grundrechenart haben wir uns bisher noch keine Gedanken gemacht, nämlich die Division. Was passiert, wenn wir zwei ganze Zahlen durcheinander teilen? Nur in Ausnahmefällen geht die Division zweier ganzer Zahlen ohne Rest auf. Damit wir Ergebnisse von Divisionen beliebiger ganzer Zahlen darstellen können, benötigen wir eine Erweiterung der ganzen Zahlen.

Definition 1.11 (Menge der rationalen Zahlen)

Die **Menge der rationalen Zahlen** besteht aus allen Zahlen, die sich als Bruch zweier ganzer Zahlen darstellen lassen:

$$\mathbb{Q} = \left\{ q = \frac{n}{m} \,\middle|\, n, m \in \mathbb{Z}, \ m \neq 0 \right\}.$$

Im Hinblick auf die vier Grundrechenarten haben wir unser Ziel erreicht. Die rationalen Zahlen sind bezüglich Addition, Multiplikation, Subtraktion und Division abgeschlossen. Beim Umgang mit rationalen Zahlen spielt die Darstellung als Dezimalzahl eine wichtige Rolle. Dabei verwenden wir anstelle eines Kommas die international übliche Schreibweise der Dezimalzahlen mit einem Dezimalpunkt.

Definition 1.12 (Dezimalzahl)

Ein Zahl der Form

$$z_n z_{n-1} \dots z_2 z_1 z_0 \cdot z_{-1} z_{-2} z_{-3} \dots$$
, $z_k \in \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$

bezeichnet man als **Dezimalzahl**. Sie besteht aus endlich vielen Ziffern z_k vor dem Dezimalpunkt und endlich oder unendlich vielen Ziffern z_k nach dem Dezimalpunkt.

Bei Dezimalzahlen werden die Ziffern 0 bis 9 verwendet. Sie beruhen auf dem Zehnersystem. Historiker sehen die Ursache für die weite Verbreitung des Dezimalsystems vor allem in der menschlichen Anatomie. Das Zählen im Zehnersystem lässt sich durch zehn Finger einfach realisieren.

Trotzdem haben sich auch andere Zahlensysteme etabliert. Unter anderem das Zwölfersystem, das sich durch die einfache Aufteilung in Hälften, Drittel, Viertel, Sechstel und Zwölftel gegenüber dem Dezimalsystem auszeichnet. Bei der Darstellung auf Computern verwendet man das Binärsystem, das nur die beiden Ziffern 0 und 1 kennt. Eine komprimierte Darstellung des Binärsystems bietet das Hexadezimalsystem zur Basis 16.

28 1 Grundlagen

Beispiel 1.4 (Dezimalzahlen)

a) Die Zahl 1.4142 ist ein typisches Beispiel für eine Dezimalzahl. Sie besitzt eine Stelle vor dem Dezimalpunkt und 4 Nachkommastellen und lässt sich als Bruch zweier ganzer Zahlen darstellen:

$$1.4142 = \frac{14142}{10000}$$

Somit ist 1.4142 auch eine rationale Zahl. Zusätzlich wird bei diesem Beispiel eine Problematik deutlich, die wir an dieser Stelle auf keinen Fall verheimlichen wollen. Die Bruchdarstellung einer rationalen Zahl ist nicht eindeutig:

$$1.4142 = \frac{14142}{10000} = \frac{7071}{5000} = \frac{28284}{20000} = \dots$$

b) Unter den rationalen Zahlen gibt es auch Zahlen, die sich nicht als endliche Dezimalzahl darstellen lassen. Ein einfaches Beispiel ist die rationale Zahl $\frac{1}{3}$. Die Darstellung dieser Zahl ist als Dezimalzahl nur dann möglich, wenn man unendlich viele Nachkommastellen zulässt:

$$\frac{1}{3} = 0.333333... = 0.\overline{3}.$$

Man spricht hier von einer periodischen Dezimalzahl. Ein Strich über den sich wiederholenden Ziffern zeigt die Periode an.

c) Durch Brüche mit dem Nenner 9, 99, 999, ... kann man aufgrund von

$$\frac{1}{9} = 0.111111\dots, \quad \frac{1}{99} = 0.010101\dots, \quad \frac{1}{999} = 0.001001\dots, \quad \dots$$

jede periodische Dezimalzahl darstellen. Dadurch sind alle periodischen Dezimalzahlen rationale Zahlen. Man kann den Trick auch bei Zahlen der Art

$$0.815471147114711... = 0.815\overline{4711} = \frac{815}{1000} + \frac{4711}{1000 \cdot 9999}$$

anwenden. Umgekehrt kann man die Dezimalzahl

$$0.999999... = 0.\overline{9} = \frac{9}{9} = 1$$

auch als rationale Zahl darstellen.

Dezimalzahlen

Jede Dezimalzahl mit endlich vielen Nachkommastellen und jede periodische Dezimalzahl ist als Bruch darstellbar und somit eine rationale Zahl. Umgekehrt bestehen die rationalen Zahlen genau aus allen Dezimalzahlen, die endlich viele Nachkommastellen haben oder periodisch sind.

1.2.4 Reelle Zahlen

In der griechischen Antike, also vor rund 2500 Jahren, gab es den ersten Nachweis, dass es auch Zahlen gibt, die nicht rational sind. Nicht rational bedeutet, dass sich die Zahl nicht als Bruch zweier ganzer Zahlen darstellen lässt. Solche Zahlen bezeichnet man heute als

1.2 Zahlen 29

irrational. Unglücklicherweise assoziiert man umgangsprachlich mit irrational etwas, was gegen die "Ratio", also gegen die Vernunft gerichtet ist. Der Ausdruck irrationale Zahlen bezieht sich jedoch auf den Begriff "Ratio" im Sinne vom Verhältnis zweier Zahlen.

Definition 1.13 (Irrationale Zahlen)

Eine Zahl, die sich nicht als Bruch zweier ganzer Zahlen darstellen lässt, bezeichnet man als **irrationale Zahl**. Irrationale Zahlen besitzen eine Dezimaldarstellung mit unendlich vielen Nachkommastellen, die sich nicht periodisch wiederholen.

Beispiel 1.5 (Irrationale Zahlen)

a) Ein typischer Vertreter der irrationalen Zahlen ist

```
\sqrt{2} = 1.4142135623730950488016887242097...
```

Zum Nachweis der Irrationalität von $\sqrt{2}$ ist *Euklid* indirekt vorgegangen, siehe *Beispiel 1.25*.

b) Leonhard Euler konnte im Jahr 1737 beweisen, dass die Zahl

```
e = 2.7182818284590455348848081484903...
```

auch irrational ist. Weitere Einzelheiten zur Eulerschen Zahl e findet man in Definition 7.9.

c) Auch von der Kreiszahl

```
\pi = 3.1415926535897932384626433832795...
```

ist bekannt, dass sie irrational ist. Die Kreiszahl π spielt eine zentrale Rolle bei den trigonometrischen Funktionen, siehe *Definition 1.28*.

Definition 1.14 (Reelle Zahlen)

Die Menge der reellen Zahlen $\mathbb R$ besteht aus allen rationalen und irrationalen Zahlen.

Die Beweise, dass die Zahlen e und π irrational sind, sind alles andere als einfach. Charles Hermite etwa hat gezeigt, dass e eine sogenannte transzendente Zahl ist. Daraus folgt insbesondere, dass e irrational ist. Es entsteht leicht der Eindruck, dass man irrationale Zahlen wie Stecknadeln im Heuhaufen suchen muss. Doch genau das Gegenteil ist richtig. Es gibt wesentlich mehr irrationale Zahlen als rationale Zahlen. Formal drückt man das in der Mathematik dadurch aus, dass die rationalen Zahlen als abzählbar und die irrationalen Zahlen als überabzählbar bezeichnet werden. Anschaulich kann man sich das folgendermaßen vorstellen: Angenommen, man hätte einen Sack, indem sich alle rationalen und irrationalen Zahlen befinden. Wenn man nun blind eine Zahl aus diesem Sack ziehen würde, dann kann man fast sicher sein, dass es eine irrationale Zahl ist.

Einbettung der Zahlenmengen

Die natürlichen Zahlen sind eine echte Teilmenge der ganzen Zahlen, die ganzen Zahlen sind eine echte Teilmenge der rationalen Zahlen und die rationalen Zahlen sind eine echte Teilmenge der reellen Zahlen : $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}$.